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ABSTRACT

In this paper, we explore several algorithms to find the best per-
forming algorithm for harmonic and percussive sound separation
(HPSS) based on anisotropic continuity of spectrogram through
comparative evaluation of their experimental performance. Separat-
ing harmonic and percussive sounds is useful as a preprocessor for
many music analysis purposes including chord estimation, rhythm
analysis, and other music information retrieval tasks. We have
introduced a method called ”Harmonic/Percussive Sound Separa-
tion” (HPSS), that decomposes a music signal into two components
by separating the spectrogram into horizontally-continuous and
vertically-continuous components, which roughly correspond to
harmonic and percussive sounds, respectively. Many possible ways
exist to realize the HPSS algorithm based on this concept while
it has been unknown which algorithm performs best. This paper
describes the details of five different HPSS algorithms and compares
their performances over real music signals.

Index Terms— Harmonic/percussive sound separation, Music
information retrieval, Source Separation

1. INTRODUCTION

Music signals are typically composed of harmonic components (such
as violin and guitar) and percussive components (such as snare and
bass drums), which have very different properties. This paper ad-
dresses methods for separating harmonic and percussive components
in music signals. Such methods can be used as powerful preproces-
sors for many music-information-retrieval (MIR) tasks, including
chord estimation, melody extraction, and rhythm pattern recogni-
tion. They can also be used for music listening applications, which
allows the users to control the volumes of drum and other sounds
separately. Owing to its potential usefulness, many attempts have
been made to develop such methods in the music signal processing
area (e.g., [1]).

So far, we have introduced a method called Harmonic/Percussive
Sound Separation (HPSS). The key point of this method is that it
focuses on the difference in the directions of continuity between the
spectrograms of harmonic and percussive components. Specifically,
the spectrograms of harmonic components are typically continuous
in the time direction, owing to their quasi-stationarity, while the
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Fig. 1. Concept of HPSS. (a) Spectrogram of the input signal W ,
(b) harmonic component H , which should be continuous in time, (c)
percussive component P , which should be continuous in frequency.

spectrograms of percussive components are typically continuous
in the frequency direction, owing to their impulsiveness. We have
verified that HPSS has been effective as a preprocessor for several
MIR applications [2], including audio chord estimation [3], rhythm
map generation [4], and audio melody extraction [5, 6].

There are many ways to formulate HPSS algorithms based on
the concept of the anisotropic continuous of spectrogram, and each
algorithm has its own parameters that need to be tuned. Of all these
algorithms, we have not yet verified which one performs best in
terms of separation performance. We also have not fully investigated
which values of the tuning parameters provide the best performance
for each of the algorithms. As HPSS can be used as an effective pre-
processor for many MIR tasks, it is important to investigate which
HPSS variant performs best. This paper describes the details of each
HPSS algorithms, and provides comparative evaluation of the de-
vised algorithms using real music signals.

2. FRAMEWORK OF HARMONIC/PERCUSSIVE SOUND
SEPARATION

In this section, we describe the general framework of HPSS. The
method is designed to decompose an input signal w(t) into har-
monic component h(t) and percussive component p(t) by a pro-
cessing on spectrogram domain. That is, given a power spectrogram
W = STFT[w(t)] = (Wt,k)1≤t≤T,1≤k≤K (Fig. 1 (a)), HPSS es-
timates the spectrogram H (Fig. 1 (b)) and P (Fig. 1 (c)), which are
continuous in time and in frequency respectively. Generally, HPSS
is formulated as a problem to find H and P that satisfy following
properties:
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(A) Spectrogram H should be continuous in time, and P should
be continuous in frequency.

(B) Sum of H and P should be approximately equal to the orig-
inal spectrogram W .

(C) Each component of the spectrogram should be non-negative,
i.e., ∀(τ, k), Hτ,k ≥ 0, Pτ,k ≥ 0.

There could be principally two approached to obtain spectro-
grams H and P that satisfy these properties. An approach is to sim-
ply extract the horizontal lines and the vertical lines from spectro-
grams, by applying image-processing techniques, such as low-pass
filtering in time and frequency directions respectively. The other ap-
proach is to obtain the power spectrograms by optimizing a criterion
that measure (A) above, under the condition that the constraints (B)
and (C) should be satisfied. Details of those methods are described
in the following sections.

After estimating the power spectrograms, we should apply time-
frequency masking to estimate the waveform h(t) and p(t) from the
estimated power spectrograms H and P . In this procedure, we also
have a choice what type of time-frequency mask to apply. In this
paper, we consider following 3 choices: (a) we do not apply any
time-frequency masks, but calculate the amplitude from estimated
power spectrogram directly, which will be referred to as “None,”
(b) estimate the amplitude by Wiener masking, and (c) by binary
masking.

3. FORMULATIONS OF HPSS

3.1. Power Spectrogram Estimation based on Low-Pass Filter-
ing of Spectrogram

As mentioned in the previous section, the simplest way to achieve the
concept of HPSS is to extract the horizontal and vertical lines from
the spectrogram by applying low-pass filtering, and regard them H
and P respectively as follows,

Ht,k
γ =

X

τ

Wt+τ,k
γf(τ), Pt,k

γ =
X

κ

Wt,k+κ
γg(κ), (1)

where f(τ), g(κ) are low-pass filters, and γ is an exponential factor
to suppress the effects of relatively strong components, and the value
is preferable to be around 0.3 to 0.5. Hereafter, we call this algorithm
as “2DF.”

As to thus derived power spectrograms, it is conceivable that
most percussive components are suppressed in Ht,k, because percus-
sive components are instantaneous and it should easily be filtered out
by low-pass filtering. Similarly, most harmonic components should
be suppressed in Pt,k. The forms of f and g are arbitrary, but in this
paper we used the following forms for simplicity:

f(τ) = 1− cos(2πτ/I), − I ≤ τ ≤ I, (2)

g(κ) = c{1− cos(2πκ/J)}, − J ≤ κ ≤ J, (3)

where I, J and c are constants to be tuned.

3.2. Power Spectrogram Estimation based on Optimization Ap-
proach

Power-spectrogram-estimation by optimizing the continuity criteria
is also an effective approach. The objective functions of HPSS we
have considered are listed in Fig. 2. In this section, we describe the
explicit form and the design concepts of each term of the objective
functions, and show the way to solve the optimization problems.

All objective functions in Fig. 2 have terms ΩH(Hγ) and
ΩP(P γ). These terms reflect the concept (A), i.e., they are the

J1(H , P ; γ, κ) = ΩH(Hγ) + κΩP(P γ) (4)

J2(H , P ; γ, a, b) = ΩH(Hγ) + aΩP(P γ)

+ b
X

t,k

(Wt,k
γ −Ht,k

γ − Pt,k
γ)2. (5)

J3(H , P ; γ, σH, σP) = ΩH(Hγ)/σ2
H + ΩP(P γ)/σ2

P

+ DI(W |H + P ) (6)

Fig. 2. Three types of objective functions of HPSS, derived from the
continuity criteria (A) and the constraints (B) and (C) described in
section 2.

Table 1. List of the parameters and their candidate values.

Parameter Value

γ in Eq. 1, 4, 5 0.3, 0.5, 1.0

κ in Eq. 4 for HM1 0.25, 0.5, 0.6, 0.9, 1, 1.2, 1.5, 2, 4

κ in Eq. 4 for HM2 0.8 + 0.04n, (n = 1 · · · 9)
a in Eq. 5 0.5, 1, 2

b in Eq. 5 and c in Eq. 2 0.25, 0.5, 0.6, 0.9, 1, 1.2, 1.5, 2, 4

σH, σP in Eq. 6 0.1, 0.3, 0.5

I, J in Eq. 2, 3 3, 10, 20

Frame length L 256, 512, 1024 points (16 kHz)

Time-frequency mask None, Wiener, Binary

continuity criterion of the spectrogram H and P in the respective
directions. Although there could be many types of specific form
of the continuity criterion of the spectrogram, one of the simplest
form is the norm of the differences between the neighboring bins of
spectrogram. That is, the continuity of spectrogram in time and in
frequency can be evaluated by the following criteria respectively.

ΩH(Hγ) =

T−1X

τ=0

KX

k=0

(Hτ+1,k
γ −Hτ,k

γ)2 , (7)

ΩP(P γ) =

TX

τ=0

K−1X

k=0

(Pτ,k+1
γ − Pτ,k

γ)2 . (8)

3.2.1. Optimization under Hard Mixing Constraint

Eq. 4 in Fig. 2 consists of only the continuity criterion (A). In this
case, inconveniently, the solution that optimize the criterion is trivial,
and the sum of the spectrograms does not suffice the concept (B).
Therefore, we had to make constraints on the spectrogram based on
the concept (B). One of the simplest constraint is the following one,
which is based on the assumption that the spectrogram is additive,
i.e., Ht,k

ξ+Pt,k
ξ−Wt,k

ξ = 0, where ξ is an exponential factor. For
ξ, we consider two feasible parameter settings in this paper, ξ = γ
and ξ = 2γ.

When ξ = γ, the objective function J1(H , P ; γ, κ) can be min-
imized by iterating the following formulae [7],

Hτ,k
γ ← min(max(Hτ,k

γ + β/4, 0), Wτ,k
γ), (9)

Pτ,k
γ ← Wτ,k

γ −Hτ,k
γ , (10)

where β = (1 + κ)−1{(Hτ+1,k
γ − 2Hτ,k

γ + Hτ−1,k
γ)

−κ(Pτ,k+1
γ − 2Pτ,k

γ + Pτ,k−1
γ)}. (11)

Hereafter, we refer to this algorithm as “HM1.” As for γ and ξ, if
γ = ξ = 0.5 is satisfied, the condition h(t) + p(t) = w(t) is
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Table 2. Parameter sets that optimize the criteria.

Method
Parameter set that maxi-
mizes SDR of H

Parameter set that maxi-
mizes SDR of P

Parameter set that maxi-
mizes average SDR

Parameter set that maxi-
mizes average SIR

HM1
L = 512, γ = 0.3,
κ = 1, Wiener

L = 1024, γ = 1,
κ = 0.25, None

L = 1024, γ = 0.5,
κ = 1.2, Wiener

L = 1024, γ = 0.3,
κ = 1, Binary

HM2
L = 256, γ = 1,
κ = 0.92, None

L = 1024, γ = 1,
κ = 1.12, None

L = 1024, γ = 1,
κ = 1, Wiener

L = 1024, γ = 1,
κ = 1.12, Binary

SE
L = 512, a = 1, b = 1,
γ = 1, Wiener

L = 512, a = 2, b = 4,
γ = 0.5, None

L = 512, a = 4, b = 2,
γ = 1, Wiener

L = 512, a = 1.2, b = 2,
γ = 0.3, Binary

Idiv
L = 512, σH = 0.5,
σP = 0.1, Wiener

L = 1024, σH = 0.1,
σP = 0.5, Wiener

L = 1024, σH = 0.1,
σP = 0.5, Wiener

L = 1024, σH = 0.1,
σP = 0.5, Binary

2DF
L = 256, γ = 0.5, c = 2,
I = 10, J = 10, Wiener

L = 512, γ = 0.5, c = 0.6,
I = 10, J = 3, Wiener

L = 256, γ = 0.5, c = 4,
I = 10, J = 10, Wiener

L = 1024, γ = 0.5, c =
0.25, I = 20, J = 3, Binary

strictly satisfied. However, it is also possible to set the parameter
other than 0.5, such as 0.3, to suppress the effects from the very
strong components.

When ξ = 2γ, assuming that κ ≈ 1, the objective function can
be minimized by iterating the following formulae [5],

Hτ,k
2γ ← ατ,kWτ,k

2γ/(ατ,k + βτ,k), (12)

Pτ,k
2γ ← βτ,kWτ,k

2γ/(ατ,k + βτ,k), (13)

where ατ,k = (Hτ+1,k
γ + Hτ−1,k

γ)2, (14)

βτ,k = κ2(Pτ,k+1
γ + Pτ,k−1

γ)2. (15)

Hereafter, we refer to this algorithm as “HM2.” If we set ξ = 0.5, the
method is advantageous because the constraint h(t) + p(t) = w(t)
is strictly satisfied. Besides, the dynamic range of the power spec-
trogram is sufficiently suppressed, because the value of γ is 0.25,
which is sufficiently small.

3.2.2. Simultaneous Optimization of Continuity and Error Criteria

Another way to realize the concept (B) is to add a criterion to the
objective function (Eq. 5 and Eq. 6), that measures the error between
the sum H + P and the original spectrogram W ,

The objective function Eq. 5 is based on the square error of the
both spectrograms. This function can be minimized by iterating the
following formulae, and we refer to this algorithm as “SE,”

Ht,k
γ ← (Ht+1,k

γ + Ht−1,k
γ) + b(Wt,k

γ − Pt,k
γ)

2 + b
, (16)

Pt,k
γ ← a(Pt,k+1

γ + Pt,k−1
γ) + b(Wt,k

γ −Ht,k
γ)

2a + b
. (17)

The objective function Eq. 6 is based on I-divergence (Kullback-
Leibler-divergence), which is known as an effective criterion to
measure the divergence between two spectrogrmas. In this case, γ
should be 0.5 for scale invariance, and the updating formulae can be
written as follows [2, 8]:

Hτ,k ← {B1 + (B2
1 + 4A1C1)

1/2/2A1}2 (18)

Pτ,k ← {B2 + (B2
2 + 4A2C2)

1/2/2A2}2 (19)

mτ,k ← Hτ,k/(Hτ,k + Pτ,k), (20)

where A1 = 2/σ2
H + 2, A2 = 2/σ2

P + 2, (21)

B1 = (Hτ+1,k
1/2 + Hτ−1,k

1/2)/σ2
H, (22)

B2 = (Pτ,k+1
1/2 + Pτ,k−1

1/2)/σ2
P, (23)

C1 = 2mτ,kWτ,k, C2 = 2(1−mτ,k)Wτ,k. (24)

We refer to this algorithm as “Idiv.”

4. PERFORMANCE COMPARISON OF HPSS
ALGORITHMS

In this section, we first tune the parameters of each HPSS algorithm
using real music signals, and then evaluate each algorithm using
other music signals. The performance criteria we used were SDR
(signal to distortion ratio) of H , SDR of P , average SDR of H and
P , and average SIR (signal to interference ratio) [9]. High SDR
indicates that separated signals have low distortion, and high SIR in-
dicates that there remain few opposite components (e.g., percussive
component in H ).

4.1. Parameter Tuning
Table 1 shows the list of parameters to be determined in this ex-
periment. Because there are many parameters and possible param-
eter values, there are too many parameter combinations. Therefore,
we first selected the candidate parameters, and reduced the permuta-
tions to be tested, based on the techniques of design of experiments
(DOE) [10]. The data set we used for parameter tuning was the same
one to the one which was used in [1]. Part of this data set was ex-
tracted from MASS database [11]. The number of music signals was
6, and the genre of each piece was different each other. All clips
were 16 kHz-sampled monaural signals, and the duration of each
clip was around 10–20 [s].

Table 2 shows the parameter values that optimize the evaluation
criteria. Some of parameters to optimize SDR of H and SDR of
P tend to be symmetry, e.g., as to (σH, σP), (0.1, 0.5) is optimal
for SDR of H , while (0.5, 0.1) is optimal for SDR of P . Similar
symmetric properties are observed in κ in HM2. The parameter sets
that makes the average SDR and SIR optimal were quite similar to
the one that optimize the SDR of P , possibly because of the biased
power ratio of harmonic components to percussive components in a
normal music signal.

As to time-frequency masking, the result shows that Wiener
mask is the best to improve SDR in many cases, while binary mask
is more preferable to suppress the volume of interference signal.

4.2. Performance Evaluation

We evaluated the performance of each method using the parameters
which were decided in the previous section. We examined the per-
formance of the methods using other 9 mixtures, which were used in
SiSEC evaluations1.

Fig. 3 shows the improvement of SDR and SIR of the signals
separated by each method for each mixture. The result shows that

1http://sisec.wiki.irisa.fr
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Fig. 3. (a) SDR improvement of H components for 9 songs, (b)
SDR improvement of P components for the 9 songs, (c) average
SDR improvement of H and P for the 9 songs, (d) average SIR
improvement of H and P for the 9 songs.

the performance principally depends on the piece, but there are fol-
lowing tendencies: the performance of “2DF” is not as high as other
methods totally. There are no algorithms that maximize all the crite-
ria. For example, if we prioritize the SDR of H over other criteria,
the algorithm that performs best is “SE” (Fig. 3 (a) ). However, the
performance of “SE” is lower than other three methods if we fo-
cused on the SDR of P . If we focused on the average SDR and SIR,
“HM2” and “Idiv” outperform other methods as a whole, indicating
the comparable performance of each other.

5. SUMMARY

In this paper, we described various harmonic/percussive sound sep-
aration algorithms, which were based on anisotropic continuity of
spectrogram: harmonic component is horizontally continuous and
percussive component is vertically continuous. There are many ways
to formulate HPSS algorithms based on the concept, and each algo-
rithm has its own parameters that need to be tuned. In this paper
we investigated the parameters sets of each HPSS algorithm to max-
imize several types of criteria, using real music signals. Further, we
conducted comparative evaluations of the HPSS algorithms.

According to the experiments, we verified the inclination of pa-
rameter sets that maximize the performance of each method. Com-
parative evaluation based on the determined parameter sets suggests
that the algorithm “HM2” and “Idiv” are comparatively better, while
they are not necessarily best to improve SDR of harmonic compo-
nent, i.e., it should depend on the demands from the application. Our
future work will include the investigation on the compatibility to ap-
plications e.g. chord estimation.
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