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ABSTRACT

This paper proposes a novel representation of music that can be used
for similarity-based music information retrieval, and also presents a
method that converts an input polyphonic audio signal to the pro-
posed representation. The representation involves a 2-dimensional
tree structure, where each node encodes the musical note and the di-
mensions correspond to the time and simultaneous multiple notes,
respectively. Since the temporal structure and the synchrony of si-
multaneous events are both essential in music, our representation re-
flects them explicitly. In the conventional approaches to music rep-
resentation from audio, note extraction is usually performed prior to
structure analysis, but accurate note extraction has been a difficult
task. In the proposed method, note extraction and structure estima-
tion is performed simultaneously and thus the optimal solution is
obtained with a unified inference procedure. That is, we propose
an extended 2-dimensional infinite probabilistic context-free gram-
mar and a sparse factor model for spectrogram analysis. An efficient
inference algorithm, based on Markov chain Monte Carlo sampling
and dynamic programming, is presented. The experimental results
show the effectiveness of the proposed approach.

Index Terms— infinite probabilistic context-free grammar (infi-
nite PCFG), nonnegative matrix factorization (NMF), Markov chain
Monte Carlo (MCMC), hierarchical Dirichlet process (HDP)

1. INTRODUCTION

The analysis of musical audio signals has been a very active area of
research. One of the tasks most frequently addressed in the field has
been automatic music transcription, where the music audio is rep-
resented as a score [1, 2]. However, transcription from polyphonic
music audio signals has continued to be a difficult task. On the other
hand, it is widely known that music can be perceived within a hierar-
chical structure over time, namely, frequent motifs, phrases, melodic
themes, or larger sections such as verses or chorus parts, where dom-
inant elements contain subordinate elements. Since such a structure
and multiple note events are both essential elements embedded in
music, these problems should be addressed simultaneously.

This paper proposes a novel hierarchical representation of mu-
sic, and a parser, which is a method of obtaining the proposed rep-
resentation from an input polyphonic music audio signal. The rep-
resentation involves a 2-dimensional tree-structure. Each node en-
codes the musical note, and the dimensions correspond to the time
and simultaneous multiple notes, respectively. Applications of the
parser and the representation we have in mind include content-based
music information retrieval systems. For example, even when the
tempo, style, and instrumentation of the songs vary in a cover song
identification task, the trees directly give us a clue to the frequent
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Fig. 1. Generative process of a 2-dimensional hierarchical tree (left)
and time-spanning productions (right).

motifs or melodic themes. Moreover, the representation can poten-
tially be used to accelerate the music audio search because efficient
search techniques can be applied to the tree structure.

Conventionally, the generative theory of tonal music (GTTM)
[3] is a well-known approach with which to understand musical in-
tuitions [4]. “Time-span tree” [3] is used to represent a hierarchical
structure of events. While their methods are mainly based on the em-
pirical rules for constructing trees, we aim to obtain production rules
even in a probabilistic framework. Moreover, we also discuss a tree-
structured representation for polyphonic scores, although a “time-
span tree” has generally been applied to monophonic scores.

Based on a Bayesian nonparametric framework, the proposed
parser runs with little previous knowledge, and simultaneously opti-
mizes both the estimated structure and the estimated notes through a
unified inference algorithm. As described in the following sections,
the method comprises an extended 2-dimensional infinite probabilis-
tic context-free grammar (PCFG) [5] and a sparse factor model for
spectrogram analysis [1, 6], and employs Markov chain Monte Carlo
sampling and dynamic programming for inference.

2. BAYESIAN NONPARAMETRIC MUSIC PARSER

Music has a 2-dimensional hierarchical structure. Frequent motifs,
phrases or melodic themes consists of a hierarchy, which can be ex-
pressed as time-span trees. In addition, polyphony often has multiple
independent voices. That is, we can consider that music consists of
a time-spanning structure and the synchronization of multiple events
at several levels of a hierarchy. We present a Bayesian model of
2-dimensional tree structures as a representation of music.

As shown in Fig. 1, the 2-dimensional tree-structured represen-
tation can be regarded as a possible generative model. Note that we
have not yet determined the pitch or timbral information for each
note (discussed in Section 3). Fig. 1 shows the generative process
of 1 bar. A whole note is first divided into two half notes, which
are expressed as the time-span production. The former half note
is then copied into the same location, which represents a two-note
chord. Note that chords require the concept of the “synchroniza-
tion” of multiple notes. The latter half note is also divided into a
quaver and a dotted quarter note. Such processes are also applied
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to several levels of hierarchy. For another instance, the whole en-
tity is divided into “verse”, “bridge”, and “chrous” (time-spanning
structure). The “chorus” part includes the counterpoint between two
voices (synchronism).

Such a hierarchy can be modeled with an extension of PCFG,
analogous to natural language processing. Since we hope that our
model will be applicable to all possible music signals, and parsimo-
nious grammars should be automatically learned depending on input
data, we use a Bayesian nonparametric approach for modeling all
possible syntactic tree structures. Here, we first review the conven-
tional Bayesian nonparametric PCFG, known as the infinite PCFG
[5], to build up an understanding of our model. For simplicity, this
paper focuses only on Chomsky normal form grammars, which have
two types of rules: emissions and binary productions. A PCFG is
a pair consisting of a context-free grammar (a set of symbols and
productions of the form A → B C or A → w, where A,B, and C
are nonterminal symbols and w is a terminal symbol) and produc-
tion probabilities, and defines a probability distribution over trees of
symbols. The parameters of each symbol consist of (1) a distribu-
tion over rule types, (2) an emission distribution over terminal sym-
bols, and (3) a binary production over pairs of symbols. The infinite
PCFG has tackled the question of how to find an adequate number
of symbols. It is defined as having an infinite number of symbols by
a hierarchical Dirichlet process (HDP) prior. We place the Dirichlet
process (DP) prior over symbols: G0 =

∑∞
k=1 βkδφk ∼ DP(γ, I)

where I is a base measure over symbols and γ is a concentration pa-
rameter of DP. β shows symbol probabilities, and φk (k = 1, 2, . . . )
are their atoms. The binary production distributions are drawn from
a DP centered on ββT : G′

k ∼ DP(α,G′
0) (k = 1, 2, . . . ) , where

G′
0 =

∑
i,j βiβjδ(φi,φj) . Each G′

k can be intuitively regarded as
the infinite-dimensional multinomial distribution over children (the
pairs of an unlimited number of symbols) whose parent is indexed
by k. All G′

k (k = 1, 2, . . . ) share the atoms (the pairs of symbols)
drawn from the top-level DP. The PCFG using HDP thus defines the
trees consisting of an infinite number of symbols.

In this paper we develop a 2-dimensional infinite PCFG with
“length”-embedded symbols to express 2-dimensional hierarchical
structures of music. The key difference is that we introduce biased
rules into the infinite PCFG. As shown in Fig. 1, time-span pro-
ductions divide a parent’s region into two children’s region on the
time axis. For example, a half note can be divided into “crotchet
and crotchet”, or “semiquaver and dotted quarter note”. However,
it is strange for a half note to be divided into “triplet and triplet”.
In other words, each node of the trees has its length on the time
axis, and the production rules preferably maintain the total length
of time in parent-child relationships (Fig. 1). The following strat-
egy is inspired by the HDP with a correlation structure [7]. Since
the standard infinite PCFG inherently cannot model time-span struc-
tures, we relate the latent “length” on the time axis to each symbol.
The production probabilities are modified by their latent lengths.

A top-level Dirichlet process is first drawn with a product base
measure:

G0 =

∞∑
k=1

βkδ(φk,Lk) ∼ DP(γ, I × F ) , (1)

where F provides a distribution over “length” space (∈ R). Lθ (θ =
1, 2, . . . ) denotes the length embedded in the θ-th symbol. We can
consider G0 to be a probabilistic measure over symbols with latent
lengths. As in the infinite PCFG, we draw from the following pro-
cess:

G′
0 =

∑
i,j

βiβjδ((φi,Li),(φj ,Lj)) , G′
k ∼ DP(α,G′

0) . (2)

Second, the distributions over binary productions are formulated by
scaling the probabilities of the Dirichlet process:

w
(k)
i,j = exp

(
− (Lk − Li − Lj)

2

σ2

)
, Gk(i, j) ∝ w

(k)
i,j G

′
k(i, j) .

Intuitively, w(k)
i,j represents the similarity between the parent’s length

Lk and the sum of the children’sLi+Lj . With this, we can explicitly
give priority to the binary productions maintaining the total length of
time on parent-child relationships.

The remaining problem is how to generate the 2-dimensional
architecture of trees. As shown in Fig. 1, we can consider each
tree node as the dominant region on the time axis, which contains
smaller elements. First, each node should have not only “length” but
also “onset” to mark its placement. Such onset propagations provide
more flexibility for tempo fluctuation. Next, to express a synchrony
of multiple notes, we introduce a binary indicator bm into each tree
node (indexed by m) : bm ∼ Bernoulli(aB). When bm = 1, the
m-th binary production is chosen from Gk. Otherwise, a special
production related to “synchronization” is selected, which makes a
pair of the copy of the parent’s symbol and puts them in the same
location as the parent’s. We place the prior Beta(χ1, χ2) on aB .

We now turn to a constructive representation of the proposed
model. Various constructions of DP, HDP, and their extensions
have been proposed. The normalized Gamma process represen-
tation has a high affinity with our model [7]. We use the fol-
lowing finite approximation as the top-level Dirichlet process:
β ∼ Dirichlet(γ/K, . . . , γ/K) where K works as the trunca-
tion level. As K increases, our approximation improves. Each
distribution over binary productions on the time axis is generated as
a modification of the normalized Gamma process representation of
the Dirichlet process:

Z
(k)
i,j ∼ Gamma(α(ββT )i,j , 1/w

(k)
i,j ) , (3)

Gk =
∑
i,j

Z
(k)
i,j∑

i′,j′ Z
(k)

i′,j′
δ((φi,Li),(φj ,Lj)) . (4)

Note that the Gamma distribution is parameterized by a shape pa-
rameter and a rate (inverse-scale) parameter. The generative process
of a tree is based on the following rules:
(
Childleft,Childright

)
| Parent = k

∼
⎧⎨
⎩

(
. . . ,

Z
(k)
i,j

∑
i′,j′ Z

(k)

i′,j′
, . . .

)
(bm = 1)

δ(k,k) (bm = 0)

(5)

tl ∼ δtp , tr ∼
{

Normal(tp + LChildleft , ρ
2) (bm = 1)

δtp (bm = 0)
(6)

where Childleft and Childleft denote indexes of symbols, tl and
tr show their onsets, and tp is the onset of their parent node. If
the symbol indexed by k is assigned to the m-th node and bm =

1, the weight Z(k)
i,j /

∑
i′,j′ Z

(k)

i′,j′ of Gk gives the probability that
Childleft = i and Childleft = j are chosen.

3. FULL GENERATIVE MODEL FROM PARSING TREE
TO MUSIC SPECTROGRAM

In the previous section, we constructed a generative model for a 2-
dimensional tree structure. It can be used as a prior distribution on a
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Bayesian model for music audio signals. Bayesian hierarchical ap-
proaches have the advantage that probabilistic values are inferred in
unified frameworks. We apply it to sparse factor models, and in par-
ticular Bayesian nonnegative matrix factorization (NMF) [1]. The
conventional NMF applied to audio signal analysis is based on a mu-
sic signal model where the magnitude or power spectrogram Y =
(Yω,t)Ω×T ∈ R

≥0, where ω = 1, . . . ,Ω is a frequency bin index,
and t = 1, . . . , T is a time frame index, is factorized into nonnega-
tive parameters, spectral bases H = (Hω,n)Ω×N and time-varying
gains U = (Un,t)N×T : Yω,t ≈ ∑

n Hω,nUn,t . A generative
model can be written as follows [6]: Yω,t =

∑
n Cω,t,n , Cω,t,n ∼

Poisson(Hω,nUn,t) , where Cn denotes the n-th hidden compo-
nent. This implies that a number of events that have a similar spec-
tral pattern are extracted as one component. (For example, when A�
is played three times on a piano in the input audio signal, the three
events can be expected to be learned as one component. ) In con-
trast, we want to construct a note-level model that makes use of the
symbolic tree-structured prior.

We assume that each note event consists of one spectral basis, its
total gain, a temporal envelope pattern (corresponding to one event),
and its onset time. The n-th note event chooses the dn-th spectral
pattern (Hω,dn)Ω×1 by the multinomial distribution over the dictio-
nary of spectral patterns (Hω,d)Ω×D . Note that though the spec-
tral bases including timbral information may be learned from input
data on the same principle as NMF, we, in this paper, train them
in advance for simplicity. Similarly, the temporal envelope pattern
indexed by en, (Oen,t′)1×T ′ , is chosen from the pre-trained dictio-
nary of temporal envelope patterns (Oe,t′)E×T ′ , where T ′ denotes
the temporal size. In this paper, we manually fix the sizes of dictio-
naries, D and E, and the temporal size of envelope patterns T ′ at the
pre-trained stage. We can consider the following generative process
for the n-th event:

Cω,t,n ∼ Poisson(Hω,dnVnOen,t−τn) , (7)

where Vn denotes the gain, and the onset time is represented as τn.
Each τn is generated from the onset time tn of the corresponding
terminal symbol: τn ∼ Normal(tn, φ). Instead of finding an ade-
quate number of events in advance, we introduce the Gamma process
prior for the overall gain of the corresponding source similarly to
[1, 6]: Vn ∼ Gamma(η/N, ηλ), where N is the truncated number
of events.

4. INFERENCE

Our inference strategy is based on an improvement of combined dy-
namic programming and Markov chain Monte Carlo (a weak-limit
sampler using Metropolis-Hastings within Gibbs sampling). Due to
limitations of space, we discuss only the core techniques.

Sampling the parsing trees

Since the parse trees propagate the continuous value “onset times”
of symbols, standard dynamic programming is complicated for our
model. We thus derive computationally tractable approximations by
time discretization. “Onset times” are quantized by the truncation
level. (We choose the window width of the short-time Fourier trans-
form. ) With this, we can describe the following Gibbs sampler
using a dynamic programming algorithm [8]. First, we construct the
“inside” table, which is similar to the standard Inside-Outside algo-
rithm:

pn,n′,k,t∝
∑

s,kl,kr,tr

aB

Z
(k)
kl,kr∑

i,j Z
(k)
i,j

1√
2πρ

exp
(
− (tr − t− Lkl)

2

2ρ2

)

·ps,n′,kl,tpn,N−s+2,kr,tr +
∑
s

(1− aB)ps,n′,k,tpn,N−s+2,k,t.

where pn,n′,k,t denotes the sum of the probabilities of all trees
whose root node is labeled k, kl and kr show Childleft and Childleft

respectively, the onset time is t, and the terminals are from n′-th to
n-th series. Next, we obtain the sampling algorithm based on the
following multinomial distribution:

p(s, kl, kr, tl, tr)

=
p(k → (kl, kr), t → (tl, tr))ps,n′,kl,tlpn,N−s+2,kr,tr

pn,n′,k,t
(8)

where s is the possible “split” position and

p(k → (kl, kr), t → (tl, tr))

= aB

Z
(k)
kl,kr∑

i,j Z
(k)
i,j

1√
2πρ

exp
(
− (tr − t− Lkl)

2

2ρ2

)

+(1− aB)δ(kl = k, kr = k)δ(tr = t). (9)

Sampling the weight Z and length L

As for the weight of the Gamma process, we choose the approx-
imated conditional distributions as the proposal distributions. We
use a first-order Taylor expansion − log

∑
i,j Z

(k)
i,j ≥ − log ζ(k) −

(
∑

i,j Z
(k)
i,j /ζ

(k))+ 1 on the log posterior. The conditional distribu-

tion on Z
(k)
i,j is approximated by the following distribution:

q(Z
(k)
i,j ) = Gamma

(
αβiβj +N

(k)
i,j , 1/w

(k)
i,j +N

(k)
i,j /ζ(k)

)
(10)

where N (m)
i,j denotes the number of times that the corresponding bi-

nary production is drawn. ζ(k) =
∑

i,j w
(k)
i,j approximates the log

posterior well. When w
(k)
i,j is close to zero, the large value of the

inverse scale parameter practically destabilizes the sampling pro-
cedure. To avoid numerical issues, we choose instead to use the
Normal distribution (truncated to hold nonnegativity) with the same
mean equal to the above Gamma distribution, and apply an accep-
tance/rejection scheme based on the Metropolis-Hastings algorithm.

The latent lengths embedded in the symbols are also sampled by
the Metropolis-Hastings algorithm. We use the Normal distribution
as the proposal distribution, whose mean is given byLθ−η·∂L/∂Lθ

where L is the log-posterior and η is the step size of the gradient
descent.

5. EXPERIMENTS

We now present some example that we undertook with the proposed
method. Audio data were downmixed to mono and downsampled
to 16 kHz. A magnitude spectrogram was computed using the short
time Fourier transform with a 32 ms long Hanning window and a
16 ms overlap. As discussed in Section 3, adequate spectral bases
and temporal envelopes were trained by using certain state-of-the-
art NMF techniques, namely, harmonic constraints for spectral bases
[2], different prior distributions to the tonal and percussive signals
[9], and Bayesian nonparametrics [1]. We set the hyperparameters
as follows: α = γ = 1, ρ = 1, φ =

√
2, σ = 1, η = 0.1, χ1 = 3,

χ2 = 2, and λ = ΩT/
∑

ω,t Yω,t. For the base measures of HDP,
we set I as the uniform distribution and F as the non-informative
Gamma distribution.

For the first experiment, we used two segments (bars 2-4 and
bars 8-10) extracted manually from the classic song (RWC-MDB-C-
2001 No. 24A) [10]. The observation times for each segment were
the same length. We applied the proposed algorithm to them (two
parsing trees and the shared parameters) with truncation N=40 and
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Fig. 2. Piano roll as the ground truth of note events (left) and esti-
mated note events

∑
n VnOen,t−τn (right). We trained 13 spectral

bases and 5 envelope patterns in advance. The proposed method
captured the nearly adequate number of notes and their pitch infor-
mation.
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Fig. 3. Two examples of parsing trees corresponding to bars 2-4
of RWC-MDB-C-2001 No. 24A (shown in Fig. 2). Each row indi-
cates the region (onset time and length) of each node of the estimated
parsing tree on the time axis. Since 2-dimensional tree structures are
too complicated to draw, parent-child relationships are not explicitly
presented. For instance, with the left sample, the 28-th node is di-
vided into the 36 and 37-th nodes using “synchrony” production. As
for the right sample, the 32-nd and 33-rd nodes are generated from
the 21-st node using “time-spanning” production.

K=15. The greatest length embedded in the symbols was fixed at
the time length of segments. Fig. 2 shows that the proposed method
decomposes audio signals into a nearly adequate number of active
events with their pitch information. As shown in Fig. 3, the pro-
posed sampler shows a meaningful hierarchical structure related to
time-span associations and simultaneous events. Since the MCMC
sampler gives us the estimated posterior distribution on parsing trees,
the clue can be directly applied to automatic music transcription: for
example the left sample implies that the opening four notes are si-
multaneous events in the form of an arpeggiated chord (played in
rapid succession) in the music score.

For the second experiment we applied the proposed algorithm
(truncation level: K=20) to two segments (bars 10-13 and bars 18-
21) extracted manually from a jazz song consisting of piano, bass,
and drums (RWC-MDB-J-2001 No. 16) [10]. It is very difficult to
decompose these signals into individual note events. We thus set the
sufficient number of events atN=100, and the parsing tree was esti-
mated using the mainly effective 60 events that had a larger volume
Vn. Because 40 smaller events contributed nothing to the parsing
tree and their parameters, their onsets were estimated based only on
Eq. (7) at the next iteration. Fig.4 shows one example sampled by the
proposed MCMC. The higher level captures the five frequent groups.
“Swinging” rhythmics are captured in deeper layers. We confirmed
that the proposed method could capture frequent patterns and simul-
taneous active events at several levels of hierarchy. Although in-
strumental information (pitch information) does not depend on tree
structures in this paper, it must provide more meaningful representa-
tions of music signals. For example, we plan to learn frequent drum
patterns and rhythmic structures of melodic voices simultaneously
in the future.
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Fig. 4. Piano roll as the ground truth of note events (top) and esti-
mated tree (bottom).

6. DISCUSSION

We proposed a parser for music signals and the resulting music rep-
resentation. It is based on Bayesian nonparametric sparse factor
analysis and PCFG. We also presented an efficient inference algo-
rithm using MCMC and dynamic programming. Our experiments
showed that the proposed method successfully captured the multi-
ple hierarchical structures of music signals. Concerning computa-
tional costs, for the first experiment, each MCMC iteration requires
approximately ten seconds with 2.5 GHz CPU, in non-optimized
MatlabTM. In the future, more sophisticated inference methods
will be considered, such as collapsed sampling [8], slice sampler
[11], and retrospective sampling [12].
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