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ABSTRACT

Temporal pitch class profiles – commonly referred to as a

chromagrams – are the de facto standard signal representation

for content-based methods of musical harmonic analysis, de-

spite exhibiting a set of practical difficulties. Here, we present

a novel, data-driven approach to learning a robust function

that projects audio data into Tonnetz-space, a geometric rep-

resentation of equal-tempered pitch intervals grounded in mu-

sic theory. We apply this representation to automatic chord

recognition and show that our approach out-performs the clas-

sification accuracy of previous chroma representations, while

providing a mid-level feature space that circumvents chal-

lenges inherent to chroma.

Index Terms— Chord Recognition, Deep Learning, Con-

volutional Neural Networks, Tonnetz

1. INTRODUCTION

As evidenced by its established research history in the music

informatics community, the harmonic analysis of digital mu-

sical content is an active research area with myriad applica-

tions. Common tasks include automatic chord transcription,

song segmentation and, more recently, structural analysis, to

name a few popular topics from the field.

For nearly as long as there has been interest in this class of

applications, pitch class profiles, or chromagrams, stand alone

as the predominant input feature for harmonic analysis sys-

tems. Though much progress has been realized based on the

frame-wise analysis of chroma, the representation presents a

set of practical challenges. Defined as the projection of the

pitch helix to fundamental pitch class by discarding height

(octave) information, as illustrated in Figure 1, chroma is nat-

urally sensitive to variations in the signal-level attributes of

timbre and loudness. Additionally, moving voices (e.g. bass

lines and melodies) may manifest awkwardly in these repre-

sentations, and significant effort has been invested in reducing

the effects of such nuances [1] [2].

Furthermore, a chromagram representation exhibits the

properties of a discrete distribution, which proves cumber-

some when used as a mid-level feature space. The spatial
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Fig. 1. Theoretical Models of Pitch – the pitch helix (left)

and the Tonnetz (right). When equal-temperament tuning is

imposed, pitch class is equivalent regardless of octave, and

both representations wrap to circular models. As shown in

the planar Tonnetz (top right), the relationship between pitch

is defined by fifths (red solid), minor thirds (dotted green) and

major thirds (dashed blue).

configuration of the pitch classes within the distribution is in-

consequential, and therefore the distance between two chroma

vectors only captures the activation differential. The circular

nature of pitch is also not natively encoded in a chroma dis-

tribution, and the vector must be explicitly rotated to identify

key modulations or other forms of intervalic motion.

Conversely, the Tonnetz is a harmonic network represen-

tation of pitch intervals where, by imposing an equal tem-

perament tuning system (octave equivalence), the surface of

the model wraps onto itself as a six-dimensional hypertorus

[3], illustrated in Figure 1. The primary advantage gained by

adopting a Tonnetz representation of tonality is that pitches

and chords live in a geometric space, and therefore distances

between points are musically meaningful. Additionally, the

Tonnetz explicitly encodes interval information and lends it-

self well to chord-based applications. Due to the latent ge-

ometry of the model, intervalic analysis can be achieved by

differentiating a given trajectory – like removing a DC-bias
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– a potentially desirable attribute in the context of computing

harmonic similarity.

To address the two challenges stated previously, we pro-

pose a data-driven method utilizing deep learning techniques

to produce a Tonnetz-space transformation that automatically

extracts harmonic, signal-level features while being insensi-

tive to fluctuations in timbre or loudness. Though such tech-

niques have recently been applied to instrument retrieval [4]

and genre classification [5], we are unaware of any instances

in the area of harmonic analysis or automatic chord recogni-

tion. The remainder of the paper is organized as follows: Sec-

tion 2 presents the proposed system architecture and both in-

put and output representations, Section 3 addresses our evalu-

ation methodology, we present and discuss our results in Sec-

tion 4 and provide conclusions and directions for future work

in Section 5.

2. PROPOSED SYSTEM

We present an approach to learning a relatively short-time

scale transformation from high-dimensional time-frequency

audio representations to a low-dimensional output space

grounded in music theory. As shown in Figure 2, the system

that projects data into the Tonnetz space is comprised of an

appropriately chosen input time-frequency representation,

a convolutional neural network architecture, and the output

representation corresponding to this model.

2.1. Time-Frequency Representation

Given that linear pitch shifts are logarithmic in frequency,

the input time-frequency representation must be warped in

frequency to allow the network to learn translation-invariant

features, i.e. intervals. This is achieved with the Constant-Q

transform, which serves as a base-2 logarithmic downsam-

pling operation in frequency and can be efficiently imple-

mented as a complex matrix multiply with the short-time

Fourier transform (STFT).

Audio signals are downsampled to 11025Hz and trans-

formed by the STFT with frame and analysis hop sizes of

8192 and 1024, respectively, resulting in a frame rate of

10.77Hz. The modified Constant-Q kernel is generated with

78 filters spanning 41–3520Hz at 12 bins per octave. In

previous work [4], we observed that narrowing the filters

by raising the conventional Hamming windows to the 8th

power and normalizing the magnitude responses reduces the

smearing of pitch information across adjacent coefficients,

enhancing tonal information.

2.2. Architecture

As timbre and loudness vary a great deal in reality, it is ex-

ceedingly difficult to arrive at a Tonnetz-space representation

by a naı̈ve reduction of time-frequency information. There-

fore, we aim to produce a robust function that, by automati-

cally extracting features and encoding this information in the

transform, is resilient to variations in both timbre and loud-

ness. Importantly, since traditional, fully-connected neural

networks are incapable of capturing spatial correlations in

data, we use convolutional neural networks (CNN) to avoid

this issue. Pioneered by LeCun et al in [6], CNNs offer sen-

sitivity to spatially correlated data and invariance to feature

translation.

CNNs are an extension of classical discriminant functions

where weights are shared across an input vector as spatially

shifted convolutions, and are often followed by a downsam-

pling operation, the addition of a bias term and application

of a non-linear activation function; for clarity, we refer again

to Figure 2. Collectively, each layer of a CNN, shown hori-

zontally, maintains several sets of weights, or kernels, that are

convolved with its inputs, producing a set of output vectors

called feature maps, marked as fi and fj . Successive con-

volutional layers are capable of learning hierarchical, shift-

invariant features, and are powerful enough to be applied di-

rectly to raw input representations.

We define the input to the CNN to be a ‘tile’ of 3 frames

(roughly 300ms) by 78 constant-Q coefficients and construct
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a network of 2 convolutional layers and 3 fully-connected lay-

ers. The first layer has 30 kernels with a (2 × 7) shape; sim-

ilarly, the second layer has 36 kernels with a (2 × 13) shape.

The fully connected layers consist of 252, 42, and 7 units.

In total, the architecture has 1,726 parameters (weights and

biases) and two model hyper-parameters (the learning rate,

η = 0.033, and weight decay λ = 0.01). The machine

is implemented using the Theano package [7] developed by

the LISA Machine Learning Laboratory at the University of

Montreal. Notably, downsampling fields along frequency di-

mensions in this architecture are explicitly avoided, as such a

process will introduce tonal ambiguity.

2.3. Tonnetz Space

Referring to a more comprehensive review in [3], we define

a 7-dimensional output space, corresponding to the 6-D Ton-

netz space and a 1-dimensional null-chord (no chord) regres-

sor. The origin of the Tonnetz-space is a poor choice for the

null-chord target, as the machine would attempt to encode

amplitude information along the radius of the space, distort-

ing tonal information. Centroids of the 12 major and mi-

nor triads are calculated as training templates, and the null-

dimension is defined as 1 and -1 for positive and negative

chord instances, respectively.

3. METHODOLOGY

To characterize the usefulness of the learned Tonnetz projec-

tion, we describe the data used for training and evaluation, the

process of training the parameterized function and the defined

loss function, as well as outline the chord detection task.

3.1. Data

Acknowledging the common heuristic that neural networks

typically require large amounts of data to train adequately, we

conduct our work on a set of 493 chord-annotated polyphonic

sound recordings, consisting of 179 songs from Christopher

Harte’s Beatles dataset, 20 songs from Matthais Mauch’s

Queen dataset, 100 songs from the RWC Pop dataset and 194

songs from the US Pop dataset, as described in [8]. All chord

labels are quantized to the 12 major and 12 minor triads, in

addition to the null-chord label. For comparison purposes,

we perform 13-fold cross validation across each album in

the Beatles set for testing. For each of the thirteen holdout

scenarios, the training data is split into 10 folds and training

repeated five times.

3.2. Training

Different models were trained for all combinations of train-

ing folds and holdout datasets, proceeding by presenting

batches of 125 randomly selected tiles from the training set

and performing mini-batch stochastic gradient descent over

the weights W with hyperparameters η, the update rate, and

λ, the weight decay of the L1 regularizer, given in Equation

(1).

W ← W − η ∗ ( ∂L
∂W + λ

∑

k

‖Wk‖1) (1)

All training sessions were run for a minimum of 20,000

iterations, and it was observed early in the training of these

models that introducing the regularizer over the kernel weights

accelerated convergence. Without imposing sparsity con-

straints, it was not uncommon for the training process to idle

for many iterations. The values of the mini-batch size and

update rate were tuned empirically until the training process

converged consistently.

To simultaneously learn the 6-D Tonnetz projection Zd

and the 1-D null-chord regressor Znull, we define a con-

trastive loss functional as (2). This function alternates be-

tween the Tonnetz loss (3) and the null-chord loss (4), based

on the sign of of the target TNull, where Equation 5 is a dif-

ferentiable approximation of the step function, tuned by the

parameter Q.

L = LTon + LNull (2)

LTon =
1

2
Y ∗ (

6∑

d=1

(Zd − Td)
2 + (ZNull − 1)2) (3)

LNull =
1

2
(1− Y ) ∗ (ZNull + 1)2 (4)

Y = sigmoid(Q ∗ TNull) (5)

3.3. Experiments

Applying the learned Tonnetz transform to automatic chord

recognition, we use a multivariate Gaussian Mixture Model

(GMM) classifier of six Gaussians with diagonal covariance

matrices and perform smoothing via the Viterbi decoder [2].

While we theoretically know the target locations of chords in

the Tonnetz space beforehand, having defined these ourselves,

we use a GMM classifier to compensate for any centroid drift

that may arise as a result of chord label quantization. Even in

the scenario where all chords deemed equivalent do in fact

project to the same proximity at the output, a multivariate

Gaussian model reduces to an over-complete k-means classi-

fier. A transition penalty is applied to the Viterbi algorithm to

tune the self-transition probability relative to all other chord

transistions. Accuracy is defined as the percentage of total

correct chord label duration over the duration of the dataset.

4. RESULTS AND DISCUSSION

As shown in Table 1, the learned Tonnetz transformation

performs competitively with the state of the art in chroma-

enhancement methods, outperforming the best system pre-
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Table 1. Chord Recognition Statistics

Method Accuracy

Tonnetz 78.41
Optimal Chroma Filtering [2] 75.7

sented in [2]. In addition to the high cumulative classification

accuracy of 78.41%, compared to 75.70%, the average stan-

dard deviation of accuracy across folds is 0.19, indicating that

the network consistently generalizes well. Chord confusions

for both the system discussed here and the chroma features

presented in [2] are shown in Figure 3. Overall, the learned

Tonnetz representation confuses fewer chord types, except

for the parallel minor in the Major chord case.

While performance varied across each holdout set as a

function of the chord labels, harmonic content and produc-

tion techniques, there was one notable outlier (“Lovely Rita”),

which seldom eclipsed 6% accuracy. Upon closer inspection,

it was apparent that there is an intonation discrepancy, as the

detected chords are consistently flat by a semitone. Being that

the learned transform does not attempt to correct for tuning

inaccuracies, this behavior is identified as an area to explore

in future work.

5. CONCLUSIONS

In this paper, we present an approach to using deep learning

techniques to yield a function that projects high-dimensional

data into a low-dimensional metric tonal space. This transfor-

mation produces an output representation that out-performs

state of the art chroma filtering methods for chord recogni-

tion tasks, while the Tonnetz representation itself provides a

set of desirable properties. Future work includes characteriz-

ing the system across a variety of parameters, such as kernel

size in both time and frequency, network capacity or sparsity

constraints on the network’s weights, as well as tuning modi-

fications to the input TFR. Finally, this approach does little to

directly incorporate musical time or longer time-scale infor-

mation. Chroma enhancement methods like recurrence-plot

filtering [8] increase chord detection accuracy to over 80%,

and informal experimentation with the application to a Ton-

netz representation encourages improvement in accuracy as

well.
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