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ABSTRACT 

 
Natural pitch fluctuations are essential to human singing. To 
effectively synthesize singing voice, the generation of these pitch 
fluctuations is necessary. Previous synthesis methods classify and 
reproduce them individually. These fluctuations, however, are 
found to be dependent and vary under different contexts. This 
paper proposes a generalized framework for F0 modelling to learn 
and generate these fluctuations on a note basis. Context-dependent 
hidden Markov models, representing the possible fluctuations 
observed in particular musical contexts, are built. To capture the 
pitch fluctuation and the voicing transitions in human singing, we 
employ both absolute and relative pitch as the modelling features. 
Results of our experiments on pitch accuracy and quality of 
synthesized singing showed that the proposed framework achieves 
accurate pitch generation and better naturalness of synthesized 
outputs.* 
 

Index Terms— singing, synthesis, pitch, modelling, HMM 
 

1. INTRODUCTION 
 
Singing voice synthesis has been one of the emerging and popular 
research topics in recent years [1]-[3]. There is a growing number 
of related applications in the market, such as entertainment 
development, computer-assisted vocal training and music 
production [4]-[6]. 

This study of F0 modelling is based on speech-to-singing 
synthesis, which is a popular approach in singing voice generation 
[7]. Given a lyrics-reading speech input, this approach converts the 
input speech to a singing voice output by manipulating the pitch 
and spectrum with an input melody. Vocal characteristics of the 
input speech are hence easily preserved. Furthermore, pleasant 
singing voice is possibly made from any individual’s input speech, 
even if he or she is not good at singing. 

Pitch variation in a singing voice is essential to the perceived 
quality [8]. Some of the unique features in the fundamental 
frequency (F0) of a singing voice, e.g. vibrato and overshoot, are 
shown to give the strongest contributions [9]. Vibrato is a quasi-
periodic frequency modulation; whereas overshoot is a deflection 
exceeding the target note after a note change. Consequently, these 
fluctuations together with some others, for example, the 
preparation (similar to overshoot, but a deflection in the opposite 
direction observed just before the note change) and the fine 
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fluctuation [9], are enriched during synthesis. Specifically, a 
second-order parametric system [10] has been widely used to 
explicitly modify these fluctuations individually [7]. 

In actual singing, these fluctuations are singer-dependent, 
correlated with each other and presenting different behaviour in 
different contexts. For instance, vibrato is present more often in 
long notes rather than short notes. The overshoot in low frequency 
notes is different from that in high frequency notes. This work 
proposes a generalized framework for F0 modelling and generation 
of singing voice. In particular, the F0 behaviour is learnt and 
modelled by context-dependent note hidden Markov models 
(HMMs), also known as note HMMs. Various F0 fluctuations are 
implicitly modelled using the same HMM representation. 
Decisions of which F0 features and where they occur are implicitly 
made, by maximizing the likelihood of the generated F0 contour 
(similar to [11]). In contrast, each note always has overshoot, 
vibrato or preparation, plus the fine fluctuation in [7]. 

Although note HMMs have been used in a similar manner for 
modelling singing style parameters [12], our method models all the 
F0 fluctuations while [12] focuses on vibrato and power dynamics. 
Hence, our modelling is generalized in that (1) all fluctuations in 
F0 are captured; (2) the representation is non-parametric such that 
the exact shapes of the fluctuations are solely determined by the 
training data and the input note sequence for generation; and (3) 
the modelling is note-based, rather than being based on fluctuation 
type (as in [7]). Different F0 representations, absolute [3] and 
relative [12] ones, have been used. In our method, the absolute and 
relative F0 are modelled under different streams. Information from 
the generated absolute and relative contours is then fused into a 
final F0 estimate for synthesis. Our experiments have shown that 
the proposed method achieves satisfactory performance in F0 
generation and natural singing synthesis. 
 

2. REVIEW ON SPEECH-TO-SINGING SYNTHESIS 
 
Before introducing our F0 modelling method, we first briefly 
review the speech-to-singing synthesis approach (as shown in Fig. 
1). It is helpful to illustrate how to use the generated F0 for singing 
voice synthesis in our experiments. 

Given a lyrics-reading speech input x(n), Tandem-
STRAIGHT [13] is used to decompose x(n) into spectral envelope, 
F0 and aperiodicity for analysis. The timing information for each 
syllable in x(n) is found by forced alignment. Our note models are 
built by learning the singing F0 behaviour with reference to the 
melody. These note models will be used to generate the singing F0 
with an input melody later. The modelling and generation will be 
discussed further in the next section. During synthesis, the vocal-
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timing process constructs the target sequences of spectral envelope 
and aperiodicity for singing output y(n) (similar to [7]). 
Specifically, spectral envelopes and aperiodicity functions of 
syllables in x(n) are replicated according to the input melody. 
Tandem-STRAIGHT will be finally used to combine the 
sequences of the converted spectral envelope and aperiodicity with 
the generated F0 and produce the singing voice output. 

 
Fig. 1. Block-diagram of the speech-to-singing method used. 

 
3. NOTE-BASED F0 MODELLING & GENERATION 

 
In this work, the F0 of singing voice is modelled on a note, 
context-dependent basis, as shown in Fig. 1. The F0 fluctuations 
on identical note context are assumed to be consistent. These 
models are initialized with mono-note models (analogous with the 
monophone models in speech recognition, covering the complete 
singing range 80-1100 Hz) and one rest model for rest notes. 
Under the equal-tempered scale with the A4 note at 440 Hz, these 
mono-note models spanned from A1 (55 Hz) to C6 (1046.5 Hz) 
and are one semitone apart from each other. Depending on the 
desired range of generated F0s and the training data used, it is 
possible to use a different span of notes. 

The singing recordings are first cut into segments, each of 
which contains a line of lyrics. The corresponding MIDI files are 
segmented as well and will be converted into the note labels. The 
HMM-based Speech Synthesis System (HTS) is used as the 
platform for model training and generation [14]. 
 
3.1. Feature Extraction 
 
Absolute F0 and relative F0 are used as the features. Let p(n) and 
r(n) be the corresponding feature values, which are defined as  

 )(log1200)( Hz2 npnp  (1) 

 
)(
)(log1200)( Hz

2 nm
np

nr  (2) 

where pHz(n) and m(n) are the pitch frequency and the known 
MIDI note frequency respectively. pHz(n) and m(n) are in Hertz 
and p(n) and r(n) are in cents. pHz(n) is extracted by Tandem-
STRAIGHT with a 5 ms frame shift. 

MIDI singing 
voiced unvoiced 

pitched 1 : p(n) real 3 : p(n) undefined 
r(n) real r(n) undefined 

rest 2 : p(n) real 4 : p(n) undefined 
r(n) undefined r(n) undefined 

Table 1. Four conditions of p(n) and r(n). 

The feature vector consists of these two static features, 
together with the delta and the delta-delta features. These six 
elements are put under two streams during modelling. There are 
some conditions under which p(n) and r(n) are undefined, as 
shown in Table 1. Hence, the method of multi-space probability 
distribution HMM (MSD-HMM) [15] is used. For all the 
undefined p(n) and r(n), they are treated as the same, assigned to 
the zero-dimensional space. 

Given m(n),  there exists a one-to-one mapping between p(n) 
and r(n). It may seem to be redundant in using both features. 
Nevertheless, p(n) and r(n) have their own merits and weaknesses 
in F0 modelling. p(n) directly represents the pitch, without relating 
to m(n). Any undefined p(n) (Condition 3  and 4 ) essentially 
means to unvoiced singing. On the other hand, there are several 
conditions ( 2 , 3  and 4 ) giving undefined r(n), including 
unvoiced singing, rest MIDI or both. r(n) is effective for modelling 
the F0 interval to m(n) with insufficient training data. Similar 
distributions for r(n) are expected for notes under similar context. 
This is especially critical for training with tree-based context 
clustering. Consequently, both features are used for modelling. 
 
3.2. Model Training 
 
Our note HMMs are N-state single-mixture left-to-right hidden 
semi Markov models (HSMMs) [16]. Although all F0 fluctuations 
are modelled with the same model structure, different states are 
responsible for certain types of fluctuations in practice. The 
transient fluctuations, namely overshoot and preparation, are 
expected to be located at earlier states; whereas vibrato will 
probably occur at the middle towards the end of the model. The 
fine fluctuation will be spread throughout all the states. 

The training procedure is similar to the standard HTS process 
for speaker-dependent systems [14]. Context-dependent note 
models are initialized by the mono-note models and rest model 
with context information. We apply the following context 
information: (1) note identity (previous, current and next note); (2) 
note interval relative to the current note in the unit of semitones 
(previous and next note); (3) note duration (previous, current and 
next note); and (4) tempo class of the song. Based on the tempo 
stored in the MIDI, a song is classified as one of five tempo 
classes: slow (below 76 beats per minute (bpm)), slightly slow (76-
90 bpm), moderate (91-105 bpm), moderately fast (106-120 bpm) 
and fast (above 120 bpm). The context-dependent note models are 
clustered by a decision tree, using questions regarding the four 
context information above and the minimum description length 
(MDL) criterion, and then re-estimated again. 
 
3.3. F0 Generation 
 
With the context-dependent note models, the F0 contour for a 
given segment can be generated. The corresponding note sequence 
is first converted to note labels with context information. The 
parameter generation algorithm for Case 3 in [11] is adopted to 
estimate the F0 contour using the absolute F0 stream. In this 
generation algorithm, the hidden state sequence and the p(n) 
sequence are estimated. We use the time alignment of the note 
sequence to specify the model durations. Global variance (GV) is 
considered in the generation. Let )(~ np  be the resultant absolute 
F0 sequence. The relative F0 sequence is estimated ( )(~ nr ) in a 
similar manner. It is further converted to the absolute F0 domain 
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by using m(n). Let )(~ nq  be this resultant F0 sequence. Any 
undefined value in )(~ np  and )(~ nq  refers to an unvoiced frame. 

In the following, we propose a method to fuse )(~ np  and 
)(~ nq  and generate a final F0 contour f(n). f(n) is determined as 

below. 
 If both )(~ np  and )(~ nq  are real, 2)(~)(~)( nqnpnf ; 
 If both )(~ np  and )(~ nq  are undefined, both estimates are 

consistent, suggesting an unvoiced frame. f(n) is set to 
undefined; 

 If )(~ np  is real and )(~ nq  is undefined, )(~ np  and )(~ nq  are 
contradictory. In this case, m(n) will be considered. f(n) is set 
to )(~ np , if m(n) is real. Otherwise, f(n) is set to undefined. 
This is essentially a voting between )(~ np , )(~ nq  and m(n); 

 If )(~ np  is undefined and )(~ nq  is real, )(~ nr  must be real for 
real )(~ nq . This is another contradictory result, since 

)(~ np must be real for real )(~ nr . Voting with m(n) is not 
applicable for this case, as this is always biased towards 

)(~ nq . Instead, a random number with equal probabilities on 
{0, 1} is drawn. f(n) is set to )(~ np , if this number is one. 
Otherwise, f(n) is set to undefined. 
With )(~ np , )(~ nq  and f(n), synthesis of the singing voice y(n) 

can be made by using either one of them. 
 

4. EXPERIMENTS 
 
The performance of the proposed F0 modelling is reported in the 
following. A F0 modelling is effective if the generated F0 contour 
is close to human singing F0 contour and the synthesized singing 
is natural with high quality. We evaluated our system performance 
by two indices: (1) objective measurement of the errors in 
generated F0 contours; and (2) subjective listening test on the 
naturalness of y(n). A collection of solo singing recordings from a 
male professional singer was used for the studies below. There 
were altogether 17 Mandarin Chinese pop songs. Each song lasted 
about four minutes, totalling 66 min 37 sec. These songs were 
selected by the singer, based on his singing skills, rhythms and 
pitch ranges. Besides, the MIDI files for these songs were used as 
the input for F0 modelling and generation. There were 685 
segments for training and 33 segments for testing in total. These 
testing segments were unseen from training. 

With this collection of singing recordings, a set of 31 mono-
note models and one rest model were trained, together with the 
associated context-dependent models. These models spanned from 
D2# (77.82 Hz) to B4 (493.88 Hz) and each contained five states.   

Several modelling methods were compared. They are: (A) 
recorded singing voice with Tandem-STRAIGHT analysis and 
synthesis (no modification on singing F0); (B) the proposed F0 
modelling; (C) MIDI F0; and (D) the second-order damping 
system for singing F0 modelling [7]. The spectral envelope and 
aperiodicity extracted from the recorded singing voice remained 
unchanged (as the converted spectral envelope and the converted 
aperiodicity in Fig. 1) for all methods.  
 
4.1. Objective Measurements Of F0 Generation Accuracy 
 
Fig. 2 shows an example of the generated F0 contours. The 
measurements on various types of error of F0 generation are given 
in Table 2. 

Comparing the generated F0 contour f(n) with the reference 
singing F0, the human F0 fluctuations were mostly learnt and 
generated. For example, the overshoots at the beginnings of notes, 
fluctuations within note periods, early stop at the end of lyrics, etc. 
Some of the unvoiced singing transitions at the note ends were 
similar to the reference singing, while some were not. Hence, our 
generalized F0 modelling was shown to be capable of learning 
various F0 fluctuations under the same premise. 
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Fig. 2. Comparison between a generated F0 contour f(n), with the 
reference singing F0 and the MIDI input. 

system error type 
RMSE (cents) E10 (%) E01 (%)

f(n) 140.27 5.20 12.40 
)(~ np  137.99 7.83 9.64 
)(~ nq  161.15 3.38 13.65 

MIDI F0 141.84 2.69 15.12 
2nd order damping system [7] 141.88 2.69 15.12 
Table 2. Measurements of F0 accuracy from various systems. 

The root-mean-square-error (RMSE) measurement was 
applied on voiced singing frames only with correct voicing in the 
generated F0. If there is any voicing error, i.e. a voiced frame 
treated as unvoiced (E10), or an unvoiced frame treated as voiced 
(E01), the corresponding voicing error is counted. The best results 
under individual error types are bolded. It was found that systems 
from the proposed modelling methods (f(n), )(~ np  and )(~ nq ) 
achieved the lowest RMSE and E01, compared to the second-order 
damping system and the one from MIDI F0. Concerning E10, the 
second-order damping system and the MIDI F0 system achieved 
the lowest percentage. This is expected, as the two systems always 
generate voiced frames, except during rests. It was found that 
using both the absolute F0 and the relative F0 streams, f(n) 
achieved satisfactory performance in terms of various types of 
error measurements. The merits of )(~ np  and )(~ nq  were inherited. 
 
4.2. Subjective Listening Tests 
 
Two subjective listening tests were conducted. The first one 
examined the performance of the proposed F0 modelling and 
generation on the naturalness of synthesized singing. The system 
(f(n)) fusing both the absolute and the reference F0 estimates was 
used as a representative of our method. Listeners were asked to 
compare and rate the naturalness of the four systems (A, B, C and 
D) by mean opinion score (MOS). Possible MOS ranged from 1 
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(bad) to 5 (excellent). This test consisted of 20 questions, taken 
from the testing set. Each contained one line of lyrics. Listeners 
could play the stimuli as many times as they wished. A total of 26 
subjects participated, contributing 520 responses. 

Fig. 3 (left figure) depicts the box plot of the MOS result. On 
each box, the central mark is the median. The edges are the 25th 
and 75th percentiles. Outliers are indicated by plus symbols. The 
experimental results showed that the naturalness of the proposed 
F0 modelling (Method B) was significantly better than generation 
using MIDI F0 (Method C) or the second order damping system 
(Method D) with 95% confidence. Compared with the recorded 
singing voice (Method A), the naturalness of the proposed 
modelling was not as high as the recorded singing. 

)(~ np )(~ nq
 

Fig. 3. Box plots of the MOS results. (left) comparison between 
the proposed F0 modelling (f(n) as Method B) and other methods; 
(right) comparison between the systems using the absolute F0 
stream, the relative F0 stream and both streams for synthesis. 

The second listening test examined the relative effectiveness 
of using the absolute, relative and both streams for F0 modelling 
and generation, on singing synthesis. There were 20 questions in 
total. Similar to the first listening test, listeners were asked to rate 
the naturalness. 26 subjects participated, contributing 517 
responses. Three other responses were found to be invalid and 
excluded. The box plot is depicted in Fig. 3 (right figure). 
Comparing the MOS results, it was found that f(n) and )(~ nq  
achieved the highest naturalness. Their performances were more or 
less the same; whereas )(~ np  was inferior to the other two. 
Referring to Table 2, )(~ np  had the lowest RMSE and E01, but the 
highest E10. )(~ nq  had low E10, but the highest E01. This revealed 
that the preservation of voiced singing plays an important role in 
the naturalness perceived by listeners, while F0 accuracy and the 
preservation of unvoiced singing are less dominant. 
 

5. CONCLUSIONS 
 
Human singing voice possesses natural fluctuations in pitch. These 
fluctuations have been traditionally classified as vibrato, 
overshoot, preparation and fine fluctuation, and are modelled 
individually. Knowing that they are correlated and vary under 
different contexts, a generalized F0 fluctuation modelling and 
generation method is proposed in this paper. Various kinds of F0 
fluctuations are jointly modelled using an identical HMM 
representation, without an explicit decision on the present types of 
fluctuations. The proposed modeling makes use of the merits of 
absolute and relative F0 features. Our experiments confirmed that 

this generalized modelling achieves satisfactory F0 generation 
accuracy and captures the natural fluctuations in pitch, leading to 
improved synthesized singing. 
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