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ABSTRACT
We present a new method for modeling the overtone structures of
musical instruments that uses an overtone corpus generated using a
MIDI synthesizer. Since multipitch estimation requires a joint esti-
mation of F0’s and their overtone structures, one of the most impor-
tant problems is the overtone structure modeling. Latent harmonic
allocation (LHA), a promising multipitch estimation method, is dif-
ficult to use for various applications because it requires appropriate
prior distributions of the overtone structures, which cannot be de-
termined from statistical evidence. Our method uses an overtone
corpus to avoid the problem of setting prior distributions and instead
restricts the lower and upper bounds of each overtone weight. The
bounds are determined from reference signals generated by a MIDI
synthesizer. Experimental results demonstrated that the overtone
structures were stably and accurately estimated for a wide variety
of initial settings.

Index Terms— Multipitch estimation, harmonic clustering,
overtone estimation, musical instrument sounds

1. INTRODUCTION

Multipitch estimation [1, 2, 3, 4] is an important research area be-
cause it has a wide range of applications, such as blind source sep-
aration [5], musical signal manipulation [6, 7], musical instrument
identification [8], and musical chord recognition [9], which require
musical scores as prior knowledge. Bayesian probabilistic models
[1, 2, 3] are particularly valuable because they can model musical
features, such as musical instrument, chord and onset as probabilistic
latent variables, and thus enable joint estimation of the source model
and these features [10, 11]. Latent harmonic allocation (LHA) [3] is
a promising Bayesian method based on variational Bayes, which can
estimate the posterior probabilities of each latent variable.

Currently, the estimation of LHA often fails because the model
contains a lot of inappropriate optima, and thus sensitive to the ini-
tializations (such as F0s and relative weights of each sound.) A com-
mon way to avoid such optima is to set precise prior distributions
of the overtone structure, but this is not a universal solution because
there has been no method to estimate them under statistical evidence.
For this reason, applications of LHA are limited because advanced
Bayesian models based on LHA inherit such local optima in addition
to the strength of it.

To overcome the weakness, we have developed a new method
for modeling the overtone structure. Relative weights of instrument
sounds, which represent the relative amplitudes of harmonic com-
ponents observed in wavelet spectrograms, can be represented as a
point on a simplex. We assume the simplex can be divided into two
regions, one corresponding to appropriate overtone structures and
the other corresponding to inappropriate overtone structures. We
approximate the former region as a convex hull, and formulate a
method based on variational Bayes that forces every overtone struc-
ture in the proposed model to have overtone weights contained in the

convex hull.

2. OVERTONE STRUCTURE MODELING

Here we define harmonic clustering as Bayesian models represent-
ing the wavelet spectrum of each instrument sound as a probabilistic
density function of a finite or infinite mixture of Gaussians. PreFEst
[1], harmonic temporal clustering (HTC) [2], and LHA are examples
of harmonic clustering. Let x be the log-frequency, μk be the funda-
mental frequency of the k-th instrument sound, λk be the precision
of the mixture components, M be the number of overtones consid-
ered in the model, and τk = [τk1, · · · , τkM ] be the relative weight
of each overtone. The k-th instrument sound is thus represented as:

pk(x|τk, μk, λk) =
MX

m=1

τkmN (x|μk + om, λ−1
k ), (1)

om = 1200 log2 m, (2)

where N denotes the normal distribution, and om denotes the rela-
tive position of the m-th overtone component on the log-frequency
axis. The relationship between the log and linear frequency scales is
defined as:

flog = 1200(log2 f − log2 440 + 4.75). (3)

Because each τkm is nonnegative and their summation is unity, the
weight vector, [τk1, · · · , τkM ], can be represented as a point on an
(M − 1)-simplex. Furthermore, the d-th time frame spectrum of the
observed spectrogram is represented as a linear combination of K
instrument sounds with mixing coefficients πd = [πd1 · · ·πdK ]:

p(x) =
KX

k=1

πdkpk(x|τk, μk, λk). (4)

2.1. Prior-based Approach
The performance of harmonic clustering depends on the estimation
accuracy of the overtone structures, in other words, how the model
can avoid the wrong estimation of them. For example, if a 440-Hz
sound has an overtone weight τk = [0, 0, 1], the sound should be
heard as 1320 Hz. More generally, we have prior knowledge that
some overtone structures are obviously inappropriate. This is shown
in Fig. 1. The aim of the overtone structure modeling is to avoid such
wrong estimations, and the prior knowledge has been represented as
a prior distribution of the overtone weight in former methods [1, 2].

However, this approach has a weakness that we cannot estimate
the appropriate priors automatically on the basis of statistical evi-
dence. This is because such priors should reflect the distribution
of the musical instruments used to play the selected piece, and the
distribution of the notes played. These distributions vary signifi-
cantly for each piece, thus the prior learning of the prior distribution
is almost impossible. Although infinite LHA [3] is a hierarchical
Bayesian model that estimates the priors using a statistical model, it
is not based on statistical evidence of the overtone structure because
it only estimates the priors that maximize the model likelihood. For
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3rd In this region, the relative weight of the third overtone is
too large, and the sound should be heard as 1320 Hz.

In this region, the relative weight of the second
overtone is too large.

Fig. 1. Relative overtone weights of first three harmonic compo-
nents of a 440-Hz sound, which can be represented as a point on a
2-simplex.
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Fig. 2. Overtone corpus harmonic clustering. Each observed sound
is approximated as nonnegative linear summation of J reference
overtone structures.

these reasons, a de facto standard method to estimate the appropriate
priors is not yet evident.

2.2. Overtone Corpus
In this paper, we introduce a new method to model the overtone
structure, which restricts the relative overtone weights to existing
in a convex hull. The vertices of the convex hull represent the
overtone weights of reference signals. To do this, each instrument
sound is represented as a nonnegative linear combination of J har-
monic cluster templates. This is illustrated in Fig. 2. Let τ0

jm be
the weight of the m-th overtone component of the j-th template and
ηk = [ηk1, · · · , ηkJ ] be the mixing coefficients for each template.
In the model, the k-th instrument sound is represented as:

pk(x|ηk, μk, λk) =

JX
j=1

ηkj

MX
m=1

τ0
jmN (x|μk + om, λ−1

k ), (5)

where the τ0
jm are precalculated using reference sounds and fixed in

the estimation. The total weight of each overtone is represented as:

τkm =

JX
j=1

ηkjτ
0
jm. (6)

With this model, it is easy to prove that there are upper and lower

bounds on each overtone weight. Let τ
(min)
m be the smallest m-th

weight of the J templates and τ
(max)
m be the largest one:

τ (min)
m = min

j
τ0

jm, τ (max)
m = max

j
τ0

jm. (7)

As a result, τkm is restricted to τ
(min)
m ≤ τkm ≤ τ

(max)
m because

mixing weights ηkj are nonnegative. More precisely, J weight vec-
tors

ˆ
τ0

j1, · · · , τ0
jM

˜
consist a convex hull in the simplex, and τkm is

restricted to existing in it. This two-level construction is similar to
latent variable decomposition [12].

Since the computational time of the model is proportional to the
number of templates J , we introduce a method to reduce the number
J efficiently. Because the interior points of the convex hull can be
represented as a nonnegative linear combination of the vertices, we
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Fig. 3. Graphical model of proposed method. Single solid lines
indicate latent variables, and double solid lines indicate observed
variables.

can remove such points from the model. Moreover, we introduce a
selection criterion, which approximates the exact convex hull with a
limited number of vertices. This is represented as:

J̃ = ∪m

˘
argminjτ

0
jm, argmaxjτ

0
jm

¯
. (8)

In addition to this, we add the second smallest and the second largest
elements to the corpus to improve the estimation accuracy. By fol-
lowing this criterion, J̃ is smaller than 4M and is thus independent
of the corpus size.

3. LATENT HARMONIC ALLOCATION COMBINED
WITH OVERTONE CORPUS

Here we construct a Bayesian network of the proposed model on ba-
sis of the original LHA. Let D be the number of time frames and
F be the number of frequency bins. In LHA, observed spectrogram
Xdf is interpreted as a histogram of a large number of independent
particles. In other words, the particles in the d-th frame and the f -th
frequency bin are observed Xdf times. In the following description,
X = [X1, · · · , XD] denotes the frequencies of the observed parti-
cles and Xd = [xd1, · · · , xdNd ] denotes the set of particles in the
d-th frame, where Nd is the number of particles observed in the d-th
frame. To perform variational Bayesian inference, we introduce a
corresponding latent variable, Z, as the class allocation; zdn indi-
cates that observation xdn is produced by the m-th overtone of the
j-th template of the k-th instrument sound. α0, β0, γ0, δ0, m0 and
w0 denote the hyperparameters of the model. The likelihoods and
prior probabilities of the proposed model are stated as:

p(X|Z, μ, λ) =
Y

dnkjm

N (xdn|μk + om, λ−1
k )zdnkjm , (9)

p(Z|π, η) =
Y

dnkjm

`
πdkηkjτ

0
jm

´zdnkjm , (10)

p(π) =

DY
d=1

Dir(πd|α0) =

DY
d=1

KY
k=1

π
α0

k−1

dk , (11)

p(η) =

KY
k=1

Dir(ηk|β0) =

KY
k=1

JY
j=1

η
β0

j −1

kj , (12)

p(μ, λ) =

KY
k=1

N (μk|m0, (γ0λk)−1)W(λk|w0, δ0), (13)

where Dir denotes the Dirichlet distribution and W denotes the
Wishart distribution. A graphical model of the proposed method is
shown in Fig. 3.

This model contains the latent variables Z, π, η, μ, and λ. The
aim of Bayesian inference is to estimate the posterior distribution,
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p(Z, π, η, μ, λ|X). In variational Bayesian inference, this is approx-
imated as p(Z, π, η, μ, λ|X) � q(Z)q(π, η, μ, λ), and the factor-
ized distributions are updated iteratively.

3.1. VB-E Step
In the VB-E step, the expected values ρdnkjm of class allocation
zdnkjm are calculated using the temporal estimation of π, η, μ, and
λ:

log q∗(Z) = Eπ,η,μ,λ [log p(X, Z, π, η, μ, λ)] + const.

=
X

dnkjm

zdnkjm log ρdnkjm + const., (14)

log ρ̃dnkjm = E [log πdk] + E [log ηkj ] + log τ0
jm

+ E
ˆ
logN `

xdn|μk + om, λ−1
k

´˜
, (15)

ρdnkjm =
ρ̃dnkjmP

kjm ρ̃dnkjm
. (16)

3.2. VB-M Step
In the VB-M step, the sufficient statistics, Nk, Ndk, Nkj , and Nfkm

are collected, and the variational posterior distribution of π, η, μ, and
λ are calculated. Since all the prior distributions are conjugate, their
variational posterior probability can be decomposed:

q(π, η, μ, λ) =

DY
d=1

q(πd)

KY
k=1

{q(ηk)q(μk, λk)} , (17)

q(πd) = Dir(πd|αd), q(ηk) = Dir(ηk|βk), (18)

q(μk, λk) = N (μk|mk, (γkλk)−1)W(λk|wk, δk). (19)

Further, variational posterior hyperparameters αdk, βkj , γk, δk, mk,
and wk can be calculated:

log q∗(π, η, μ, λ) = EZ [log p(X, Z, π, η, μ, λ)] + const., (20)

Nk =
X

dnjm

ρdnkjm, Ndk =
X
njm

ρdnkjm, (21)

Nkj =
X
dnm

ρdnkjm, Nfkm =
X
dj

X
xdn=xf

ρdnkjm, (22)

αdk = α0
k + Ndk, βkj = β0

j + Nkj , (23)

γk = γ0 + Nk, δk = δ0 + Nk, (24)

mk =
γ0m0 +

P
fm Nfkm(xf − om)

γ0 + Nk
, (25)

w−1
k = w−1

0 + γ0m
2
0 +

X
fm

Nfkm(xf − om)2 − γkm2
k, (26)

where xf denotes the log-frequency of the f -th frequency bin.

4. EVALUATION

To evaluate the robustness of the proposed model, we conducted
multipitch estimation experiments using 20 musical pieces and 3 ini-
tialization conditions.

4.1. Corpus Construction
We used a commercial musical instrument digital interface (MIDI)
synthesizer (Roland SD-80) to produce reference signals and
recorded the sounds of 70 General MIDI instruments (1 to 80, ex-
cluding 15, 17, 18, 19, 20, 32, 46, 48, 56, and 62.) The ones omitted
have an illegal overtone structure. Instruments 81 to 128 are mostly
artificial, so it is difficult to select ones with appropriate overtone
structures. The sounds were recorded at 440 Hz for one second and
transformed into wavelet spectrograms using Gabor wavelets. The

spectrograms were integrated over time and each overtone frequency
band, fm ≤ xf < fm+1, to create the overtone weights:

fm =

„
m − 1

2

«
× f0, τ0

jm ∝
DX

d=1

X
f
(log)
m ≤xf <f

(log)
m+1

Y
(j)

df , (27)

where f0 is the fundamental frequency, f
(log)
m is the corresponding

log-frequency of fm, and Y
(j)

df is the wavelet spectrogram of the j-th

instrument sound. The obtained parameters, τ0
jm, were filtered using

the criterion explained in 2.2. Finally, the size of the corpus, J , was
set to 16.

4.2. Estimation Target
From the RWC Music Database [13], five piano solo pieces (RM-
J001 to RM-J005), five guitar solo pieces (RM-J006 to RM-J010),
and ten classical chamber pieces (RM-C012 to RM-C021) were se-
lected and used to compare the performance of LHA with that of the
proposed method. All the pieces were recorded from MIDI files us-
ing another MIDI synthesizer (Yamaha MOTIF-XS.) The recorded
signals were truncated to the first 30 seconds and transformed into
wavelet spectrograms using Gabor wavelets with a its time resolution
of 16 [msec], frequency bins from 30 to 3000 [Hz], and frequency
resolution of 12 [cents].

4.3. Experimental Settings
We used three types of initialization: random, linear, and exponen-
tial. The first starts the estimation from the VB-E step, and the other
two start from the VB-M step. For the random initialization, we
sampled the responsibilities ρdnkm or ρdnkjm from a uniform dis-
tribution. This is considerably the worst case and thus tests model
stability for initialization. For the latter two, initial fundamental fre-
quencies mk were set from 33 Hz (C1) to 2093 Hz (C7), and the
standard deviation σk = (wkδk)−1/2, was set to 50 [cents]. The
initial overtone weights were set to be uniform, or decaying expo-
nentially. The relative weight of the source model in the d-th frame,
πdk, was set to the sum of the amplitudes of the nearest frequency
bins of its overtones. Initialization of LHA for the exponential ini-
tialization was done using

αdk ∝
MX

m=1

2−mXdfkm , βkm ∝ 2−m, (28)

γk =
DX

d=1

αdk, δk =
DX

d=1

αdk, w−1
k = δk (50 [cents])2 (29)

to imitate the update equations of the variational Bayes. For the
proposed model, we cannot initialize overtone weights τkm directly
because they are represented as the summation of J harmonic tem-
plates. Instead, we optimized βkj by using EUC-NMF [14] for 100
iterations, so that the total overtone weights,

P
j βkjτjm, approxi-

mated the initial overtone weights.

During the overall estimation, all priors were set to be non-
informative. That is, α0, β0, δ0, and w0 were set to unity, γ0 was
set to 10−3, and m0 was set to zero. Model orders K, J, and M
were set to 73, 16, and 6, respectively, where the number of overtone
M is equal to HTC [2]. For the random initialization, estimations
were truncated at 1000 iterations and for the linear and exponential
ones, they were truncated at 100 iterations. The numbers of iter-
ations were determined experimentally on the basis of estimation
accuracy saturation.

After the iterations, the estimated pitches were extracted from
the posterior hyperparameters. Let r be the threshold. The effec-
tive observation count Ndπdk satisfies Ndπdk ≥ r maxdk Ndπdk,
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Table 1. Calculated F-measures: rand stands for random initializa-
tion, linear stands for linear initialization, and exp stands for expo-
nential initialization.

LHA OC-LHA (proposed)
Music Type rand linear exp rand linear exp

Piano Solo 31.1 51.3 58.5 55.0 62.3 58.1
Guitar Solo 12.8 48.8 76.7 64.3 73.9 72.6

Chamber 23.8 36.1 49.1 46.8 53.6 50.9

LHA

1st 2nd

3rd

OC-LHA

1st 2nd

3rd

Fig. 4. Estimated relative weights of first three harmonic compo-
nents of 73 sound source models obtained for random initialization
with musical piece RM-C012. Convex hull projected to 2-simplex is
displayed with solid lines. Corresponding F-measures are 19.4 for
LHA and 63.4 for OC-LHA.

is considered to be sounding. The threshold was optimized experi-
mentally for each piece, initialization, and method to evaluate the po-
tential performance of each model. The model frequencies were al-
located the nearest note number. The estimated result and the ground
truth were transformed into D×128 binary maps, and the F-measure
was calculated. Let N be the number of entries in the estimated map,
C be the number of entries in the truth map, and R be the number
of correct entries in the estimated map. The resultant F-measure is
calculated as F = 200R/(N + C). The larger the value of the
F-measure, the better the performance.

4.4. Results
The results are summarized in Table 1. LHA with exponential ini-
tialization and the proposed model with linear initialization had sim-
ilar performance, which means LHA and the proposed model work
properly once the appropriate initial parameters are given. Compar-
ing the linear and exponential columns, we see that LHA was more
sensitive to the initialization of overtone weights. The estimation ac-
curacy of LHA was substantially worse with random initialization
because LHA did not handle the overtone weights appropriately. In
contrast, the accuracy of the proposed model was consistent among
the three initializations.

The estimated overtone weights are plotted in Fig. 4. LHA fa-
vored source models with only a second overtone or with only a
third overtone while the proposed model did not estimate such wrong
structures.

5. DISCUSSIONS
5.1. Properties of the Overtone Corpus
Here we explain the validity of the assumption that the region of ap-
propriate overtone weights is a convex hull. Let us have J template
sounds of the same pitch, and plot their relative overtone weights
in a simplex. The plotted points make a convex hull. If we pick
up any point inside it, the corresponding sound can be obtained as
a linear combination of the template sounds which share the same
phase. In this case, the pitch of the sound is equal to that of the tem-
plate sounds. Therefore, our assumption can be justified whenever
the perceptual pitch and the fundamental frequency are equal.

Another important property we should discuss is, the assumption
that the simplex can be divided into two regions, in one region the
corresponding overtone structures are appropriate and in the other

the corresponding overtone structures are inappropriate. For the
perceived pitch depends on the listener’s perception, a more better
model can be obtained if we take into account another region where
the corresponding pitch is unknown. This should be considered in
the future work.

5.2. Relationship with the Conventional Method
Our model includes the original LHA as a special case whenever the
harmonic templates is set to τjm = ωjm, where ωjm is the Dirac
delta function. The proof is omitted for reasons of space.

6. CONCLUSIONS
Our proposed method for overtone structure modeling represents the
overtone weights as a nonnegative linear combination of harmonic
templates. The templates are collected from audio signals generated
using a MIDI synthesizer to avoid overtone structures that are not
observed in audio signals. We assumed that the appropriate over-
tone region is a convex hull and introduced an initialization-robust
multipitch estimation. Experimental results demonstrated that the
overtone structures were stably and accurately estimated for a wide
variety of initial settings. We will extend this model and construct a
joint estimation framework of multipitch estimation and instrument
identification in the future work. This research was partially sup-
ported by Grant-in-Aid for Scientific Research (S) and the Global
COE Program.
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