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ABSTRACT

In this paper, we present tempo estimation and beat tracking
algorithms by utilizing percussive/harmonic separation of
the audio signal, in order to extract filterbank energies and
chroma features from the respective components.
Periodicity analysis is carried out by the convolution of
feature sequences with a bank of resonators. Target tempo is
estimated from the resulting periodicity vector by
incorporating metrical relations knowledge.

Tempo estimation is followed by a local tempo
refinement method to enhance the beat-tracking algorithm.
Beat tracking involves the computation of the beat saliencies
derived from the resonators responses and proposes a
distance measure between candidate beats locations. A
dynamic programming algorithm is adopted to find the
optimal “path” of beats. Both tempo estimation and beat
tracking methods were submitted on MIREX 2011, while
the tempo estimation algorithm was also evaluated on
ISMIR 2004 Tempo Induction Evaluation Exchange
Dataset.

Index Terms— tempo estimation, beat tracking,
chroma features, periodicity analysis

1. INTRODUCTION

Most tempo estimation systems involve a three step process.
Firstly, a midlevel representation is extracted from the audio
signal that supposes to capture all the rhythmic relevant
events within a song excerpt. Spectral Complex Difference
[1] and band energies evolution over time [2-4] as well as
onset detection functions [5] [6] are widely used for tempo
estimation. However, there is evidence that continuous
representations perform better [7]. Alonso et al. in [8]
proposed a system that estimates the tempo by decomposing
the music signal sub-bands into harmonic and noise
components. Recent approaches [9] [10] utilize chroma
related features as midlevel representations.

Subsequently, the midlevel representation -also referred
as accent features- is parsed to extract a periodicity vector,
i.e. a vector containing the saliencies of the target periods.
This is usually achieved by self-similarity approaches as the
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Autocorrelation Function (ACF) [1], [11] or by processing
accent features by a bank of resonators [3] [4] [10]. The
final step involves the selection of the target tempo. This is
usually achieved by peak picking in the periodicity vector.
In [3], prior knowledge such as prior period distributions
and metrical relations are used in a probabilistic model to
choose the correct tempo. Recent approaches [9], [11]
incorporate classification techniques.

For the beat tracking task, there is a variety of methods
reported in the literature. Dixon in [5] utilizes agents to
track beat sequences hypotheses in a multiple hypothesis
search. Davies and Plumbley [1] utilize a two-state model to
handle discontinuities in beats caused by switching metrical
levels. In [12] an onset detection system based on
bidirectional long short-term memory neural networks was
extended to a beat tracking system that performed best in
MIREX 2010 Audio Beat Tracking task. Ellis [2] formulates
beat tracking as an optimization problem and employs
dynamic programming to solve it. Peeters and Papadopoulos
[13] propose beat templates to track beats and downbeats
through a probabilistic framework.

In this paper, we extend the tempo estimation algorithm
presented in [10] by utilizing harmonic/percussive
separation of the audio signal, to enhance feature extraction.
In addition, we exploit metrical relations knowledge, and the
introduction to the notion of “fundamental tempo”, in order
to estimate the target tempo from the resulting periodicity
vector. Tempo estimation is followed by a beat-tracking
algorithm, which defines distances between candidate beat
locations and adopts a dynamic programming algorithm to
the find the optimal “path” of beats.

2. TEMPO ESTIMATION
2.1. Feature Extraction

To extract the desired features, the constant Q transform
(CQT) of the audio signal is calculated, using 12 bins per
octave, with 25Hz/5kHz minimum/maximum frequencies,
and a Hanning window with half overlap. Frequency bins
are aligned to the western scale musical pitches and are
rescaled by bicubic interpolation/decimation to a 200Hz
frame rate, resulting the log-frequency spectrogram
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S={|W,, [} where W,  denotes the CQT and i, f denote
the time and frequency bin indices respectively.

To enhance the extraction of the desired features we
apply to S the harmonic/percussive separation algorithm
proposed in [14]. We used soft masking and y=0.6. We
denote H and P the harmonic/percussive components
derived from S respectively.

For each time index i we sum up the amplitudes of the
frequency bins in H that correspond to the 12 semitones of
western musical scale in order to compute the 12-
dimensional chroma vector x, :

xli= Y H, ., k=1.12 1)
feeFy
where F, are the bins corresponding to tone .

In a similar way, filterbank energies are extracted from P
with 8 logarithmically scaled, equal bandwidth and
overlapping triangular filters. We denote filterbank energies
as x,.
2.2. Periodicity Analysis

Feature vectors are differentiated and convolved with a bank
of resonators as in [10] in the range of [30,500] bmp. The
resonator outputs are segmented using a rectangular window
of O times the target tempo period and one period overlap.
The value for QO was set to 8. We compute the salience of
tempo ¢ in segment s as the maximum amplitude value of
the corresponding resonator output in segment s.

The above process is used to calculate the “tempogram”
matrices TG’ (¢,s) for each feature vector v. The constant Q
value property has the effect of fewer segments for smaller
tempos, thus the rows of TG" are time-wrapped to have the
same size that is equal to the size of the faster tempo. Then,
for each segment index s, tempograms are summed for each
feature class (filterbank/chroma) independently resulting the
matrices TG” and TG’ for chroma and filterbank
features respectively. To estimate the global periodicity
vector for the whole excerpt denoted by T,, TG” and

TG/ are summed across all segments and then multiplied:

T, ()= QTG  t,s)(Q_TG"(1,5) (@)

2.3. Choosing the Correct Metrical Level

Our method makes the assumption that the peaks in the
global periodicity vector that are musically relevant to the
ground truth are integer multiples of a certain tempo value.
We compute the fundamental tempo 7; as

T, = argmax (3" T, (kn)} 3)
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Then we expect that T, has peaks at target tempo as well as

at integer multiples of 7. Analogously to the {meter, tactus,

tatum} hierarchical model for beat relations, in our approach
we consider a model of two tempi {7,,7,} values (slow,

fast) under the assumption that 7. is the more perceptually

s

relevant, while 7, is more likely to be double, triple or
quadruple of 7,. We define the joint salience J (7,,7,) of
T, T, as

T (T, T) =[T,(T)+ T, (T 3 e WEe (4

i=2.4
It is clear that J_ becomes greater as the saliencies of
T.,T

sotfo

increase, and when the latter is close to the double,
triple or quadruple of the first. The final tempo T is the T,

that maximizes J; and is a multiple of T, i.e.:

T =argmax{J, (iT,,kT,),iT,, kT, € {30,..500} } %)

i,
3. BEAT TRACKING ALGORITHM

3.1. Beat Candidates and Saliencies

As beat candidates we consider the peaks of the resonator

k m
responses r. T,

ohT 3 corresponding to the found tempo T

for all feature sequences x*,,x”

o» X respectively. Because the

phase responses of the resonators cause lags between the
peaks of the feature sequences and the peaks of the
responses, we modify the resonator of tempo 7 to have zero
response phase and magnitude response equal to the square
of the magnitude responses of the resonator used at the
tempo estimation step. This produces synchronized feature
sequences and resonator responses. We denote the time
instances of beat candidates as {b;}, j=1..N and the

corresponding saliencies as s/b., which are computed as:

Skl; =t,,(b)+F,.(b) (6)
where

Eo()=>x (k)/ max(er,r(s)J, c={flchy (7)

3.2. Inter-beat Distances

The distance of two beat candidates must increase as the
time interval between them diverges from the target period
7, and must decrease as the candidate next beat salience

increases. We propose the distance between b,,b, with
b, >b,, as follows

d(b,,b,) = y-d(b,b))~(1~-y)s] (8)
where



d,(b.b,) = 1—exp{—l21n2 (b, =b)/ 7, )} )
o

Parameter y € (0,1) controls the balance of the contribution
of the two terms in the distance and o controls how beat
distance deviations to 7, affect d(b,b;) .

3.3. Coping with Tempo Variations

It is desirable to adapt the inter-beat distances to the tempo
variations that occur within a music excerpt. To do so, after
the global tempo estimation process described in Section 2,
a more precise tempo estimation process takes place. Firstly,
a rough tempo curve t, is generated by considering the most

salient peak for each segment s around the found tempo 7:

t,(s)= argmax {TG”(¢,s)+TG"(t,5)}
(1=-p)T<t<(1+8)T

(10)

for f value being around 0.1. Next, we re-estimate the
tempo as described in Section 2 by using Q=4 and all

resonators with period resolution 5ms in tempo range of
[min(t,),max(t,)]. Then the beat saliencies s“/’ are re-

estimated as in Eq. (7) where
£.(b) = Zrﬁ,m,xb/)/mgx(Zr:ms)j, c={fl.chj (11)

T(s) denotes the local tempo with the maximum strength at

time segment s and r) . ,r}

17y Yonr(s) denote the corresponding

resonator responses. Then Eq. (9) is reformulated as

1
dT(bI.,bj):1—exp{—?1n2((bj—b‘.)/TT(b/))} (12)

3.4. Dynamic Programming Solving

Let {b},/eLc{l..N} be a target beat sequence. The
optimal beat sequence {b;‘} should minimize the objective

function

O({b/,leL}) = d(®b ,b) (13)

leL

We denote by C"(b,) as the minimum cost to “reach” beat
b, . Establishing a dynamic programming schema, we write
the recursive formulae

C'(b) =n},in{d(bk’b[)+C*(bk)} (14)
path(b,) = argmin{d (b, ,b,)+C" (b,)} (15)

where path(b,) denotes the preceding beat to reach b,

optimally. The costs C(b,),i =1..N are calculated from Eq.
(14) recursively. To derive the optimal sequence we choose
a subset of possible beat locations {b,} in the end of the
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excerpt. Similarly to Viterbi algorithm, the last beat is
chosen as

by = argmin{C"(8))} (16)
by,

and the optimal beat sequence is found by moving back-
wards:

b, = path(b), 1=K.2 (17)

4. EVALUATION
4.1. Tempo Estimation Results

The proposed tempo estimation method was ranked first in
the MIREX 2011 Tempo Estimation task and outperformed
all other submitted methods (Table 1). It was also evaluated
on the ISMIR 2004 Tempo Induction evaluation exchange.
Details on the database can be found in [7]. Table 2 shows
the performance of the proposed method based on
accuracies accl and acc2 within a 4% tolerance for three
basic settings: metrical analysis with no source separation
(MA); source separation (no metrical analysis), where
tempo is decided by peak picking within T, (SS); both

source separation and metrical analysis (SSMA). Each
version was evaluated for all feature settings.

Results indicate that the deployment of the metrical anal-
ysis method presented, increases significantly acc/, in both
datasets, and for all feature sets, except in the case of using
solely filterbank energies in the ballroom dataset. For songs
dataset, the usage of metrical relations increases accl over
25% for all feature sets. For ballroom dataset, the
improvement in acc! is smaller, but still significant

When combining features, the employment of source
separation has different effect on the data-sets. Acc/ and
acc? increase by 1.7% and 0.8% respectively for the
ballroom dataset. On the other hand, accl decreases by
1.5% in songs dataset, while acc? increases by 0.8%. This
can be explained by the fact that since many excerpts in
Songs dataset are not percussive, the decomposition of a non
percussive signal into a percussive and harmonic part will
result to a meaningless and noisy decomposition. However,
the source separation for tempo estimation task is promising
and should be investigated in more detail in the future.

Table 3 shows comparative results of our method with
the current state-of-the-art algorithms that reported results in
ballroom/songs datasets, i.e. the top three performing
algorithms at the ISMIR 2004 tempo induction contest [7],
the baseline of our method [10] and Seyerlehner et al. [5]. It
can be seen that the proposed method performance is at par
within the current state-of-the-art algorithms.

It must be noted that the method proposed in [3] employs
prior information about tempi, while the method presented
in [11] is biased, since it was implicitly trained on these
datasets.

4.2. Beat Estimation Results



The proposed beat tracking method was also submitted in
MIREX 2011. Results are presented in Table 1. In MCK
dataset, where tempo is almost constant, although the
proposed method is ranked 6™ it performs close to the best
performing algorithms. On the other hand, in MAZ dataset
where excerpts exhibit great tempo variations, the proposed
method seems inadequate to capture beat locations. This is
evident, since the algorithm searches for an almost constant
tempo before accessing the beat locations.

Beat Tracking Tempo Estimation
MCK (F-Measure) | MAZ (F-Measure) MCK (P-Score)
SB3 52.69 | FW1 67.56 || GKC3 0.8290
SB4 50.86 | SB4 51.17 || FW2 0.7385
KFROL1 50.68 | GP4 49.12 || ZG1 0.7275
KFRO2 5045 | GP5 47.02 || SP1 0.7105
GP5 5032 | GKC2 42.18 || GKCé6 0.6777
GKC2 50.10 | GP2 41.80 || SBS 0.6559
GP4 50.09 | SB3 40.29
GP3 49.56 | GP3 40.16

Table 1. MIREX 2011 beat tracking and tempo estimation
algorithms (proposed method is denoted by GKC2 and GKC3).

Ballroom Songs
Features Accl Acc2 Accl Acc2
Filterbank 38.68 84.53 67.96 88.82
MA Chroma 56.30 88.83 44.52 79.78
Combined 58.17 92.41 60.00 89.03
Filterbank 52.29 88.40 24.52 88.60
SS Chroma 46.13 88.40 15.05 70.54
Combined 53.30 90.97 21.08 88.17
Filterbank 48.42 90.40 57.85 88.39
SSMA | Chroma 54.58 82.95 40.86 73.12
Combined 59.89 93.27 58.49 89.89

Table 2. Effect of source separation and metrical analysis to tempo
estimation accuracy.

Ballroom Songs

Accl Acc2 Accl Acc2
SSMA 59.89 93.27 58.49 89.89
MA 58.17 92.41 60.00 89.03
Klapupi [3,7] 63.18 90.97 58.49 91.18
Gkiokas [10] 61.08 93.98 42.15 90.11
Uhle [7] 56.45 81.09 41.94 71.83
Scheirer [4,7] 51.86 75.07 37.85 69.46
SE1 [11] 78.51 - 40.86 -
SE2 [11] 73.78 - 60.43 -

Table 3. Comparative results of the proposed method to the state-
of-the-art.

5. CONCLUSION AND FURTHER WORK

In this paper we presented Tempo Estimation and Beat
Tracking algorithms. Although no prior information is
assumed, both algorithms perform within the current state-
of-the-art. Simple metrical analysis enhances greatly the
selection of the correct tempo compared to peak-picking of
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the periodicity vector. This analysis may be extended to take
into account more metrical relations. Harmonic/Percussive
separation, which has not been used for tempo estimation
and beat tracking before, seems to enhance the accuracy of
tempo estimation in some cases. However, the utilization of
harmonic/percussive separation should be investigated more
thoroughly in the future, since both parts of the music signal
contain complementary and sometimes conflicting rhythmic
information.
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