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ABSTRACT

The coding of audio-visual signals is generally based on different
paradigms for high and low rates. At high rates the signal is ap-
proximated directly and at low rates only signal features are trans-
mitted. The recently introduced distribution preserving quantization
(DPQ) paradigm provides a seamless transition between these two
regimes. In this paper we present a simplified scheme that preserves
the power spectral density (PSD) rather than the probability distri-
bution. In a practical system the PSD must be estimated. We show
that both forward adaptive and backward adaptive PSD estimation
are possible. Our experimental results confirm that preservation of
PSD at finite precision leads to a unified coding paradigm that pro-
vides effective coding at both high and low rates. An audio coding
application shows the perceptual benefits of PSD preserving quanti-
zation.

Index Terms— Quantization, audio coding, predictive coding,
forward adaptation, backward adaptation.

1. INTRODUCTION

To achieve good perceived quality for reproducing audio-visual sig-
nals, a natural requirement is to preserve features of the source sig-
nal. However, feature preserving coding procedures generally do
not converge to transparent quality with increasing rate. On the
other hand, coding approaches that lead to transparent quality at
high rates are inefficient in preserving the features of the source
signal when rate decreases. This has led to the usage of different
coding paradigms for high and low coding rates. A recently devel-
oped paradigm that unifies high and low rate coding is distribution
preserving quantization (DPQ) [1]. DPQ preserves the probability
distribution of the source, thus retaining all features related to statis-
tics of the signal. Subject to the distribution preserving constraint,
DPQ minimizes a conventional distortion criterion. The result is a
seamless transition from signal synthesis to signal quantization with
increasing bit rate.

A mean-squared-error (MSE) optimized DPQ can be con-
structed by using a dithered quantizer and a non-linear transfor-
mation [2]. Unfortunately, the non-linear transformation, which is
used to retrieve the source probability distribution, is computation-
ally complex. In many cases, preserving the probability distribution
exactly may not be feasible due to the associated complexity. This
issue may be addressed by relaxing the distribution preserving
constraint and maintaining only those statistical features that are
perceptually most important. For example, in audio applications,
it may be sufficient to preserve the power spectral density (PSD)
of the source. This leads to a technique called PSD preserving
quantization (PSD-PQ). PSD-PQ can be implemented by means of
a pre/post-filtered dithered quantizer [1].
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Fig. 1. Diagram of PSD-PQ.

In this paper we take a broader perspective than [1] and consider
how the source PSD is conveyed to the decoder and the effect of the
associated approximations. Two procedures are natural. First, the
signal model can be extracted from the data, encoded, and transmit-
ted to the decoder. This means that we have to consider the effect
of model mismatch. An alternative solution is to extract the model
from the most recent available decoded data at both the encoder and
the decoder. In this paper we show that such a backward adaptive
PSD-PQ converges to the optimal configuration over time.

To show the effectiveness of PSD-PQ we consider its application
to audio coding. A listening test shows that PSD-PQ leads to better
perceived quality than a comparable rate-MSE optimized quantizer.

2. THE PSD-PQ APPROACH

The PSD-PQ scheme considered in this paper follows [1]. Here, we
extend our earlier results and consider the effect of model mismatch.
In general, the PSD-PQ method is motivated from the fact that the
source PSD can be retrieved by filtering the output of a dithered
quantizer, which adds uncorrelated noise to the source signal. To
enhance the rate-MSE performance, a pre-filter is also introduced as
in [3].

2.1. System Structure

Let the source X be a stationary process with PSD S(ω) (we as-
sume S(ω) > 0, ∀ω). We propose a coding system, shown in Fig. 1,
consisting of a pre-filter H(ω), an entropy coded dithered quan-
tizer (ECDQ) with subtractive dither Z and lattice quantizer Q(·),
together with a post-filter G(ω). According to [4], ECDQ is effec-
tively an additive noise channel, and the optimal achievable bit rate
of the ECDQ, which is the entropy rate of its output given the dither,
equals the mutual information rate between the input and the output
of this channel. In addition, it is always possible to transform a lat-
tice into a white lattice, for which the effective channel noise is white
in the wide sense [4]. Here we also scale the lattice so that the power
of the effective channel noise equals unity, leaving the rate-distortion
tradeoff fully determined by the choice of the pre/post-filter.

For this coding scheme, the PSD of the reconstructed signal X̃
is S̃(ω) = |H(ω)|2|G(ω)|2S(ω) + |G(ω)|2. Then a sufficient and
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necessary condition for a system to be a PSD-PQ is

|H(ω)|2|G(ω)|2S(ω) + |G(ω)|2 = S(ω). (1)

2.2. Optimal Pre/Post-filter
In [1], the lowest possible rate for PSD-PQ of stationary Gaussian
processes is derived for any MSE distortion level using an informa-
tion theoretical argument. This optimal rate-MSE relation is given
by the following proposition.
Proposition 1. For any stationary Gaussian process, no PSD-PQ
schemes can achieve a rate smaller than

R =
1

4π

∫ 2π

0

log
(λ2 + 4S2(ω))

1

2 + λ

2S(ω)
dω, (2)

if the MSE is smaller than

D =
1

2π

∫ 2π

0

2S(ω) + λ−
(
4S2(ω) + λ2

) 1

2 dω. (3)

We will show that, using a lattice quantizer of infinite dimen-
sionality and a proper pre/post-filter, the PSD-PQ in Fig. 1 can
achieve this lower bound on the rate. It is known that, when ap-
plied to a stationary Gaussian process, the rate of an ECDQ with a
pre-filter and a normalized infinite dimensional lattice is [3]

R� =
1

4π

∫ 2π

0

log(|H(ω)|2S(ω) + 1)dω. (4)

With a lattice of finite dimensionality, the bit rate of a pre-filtered
ECDQ can be upper bounded by an offset up to 0.5 log(2πe/12) ≈
0.254 bits/sample from (4). Next, we provide the optimal pre/post-
filter by the following proposition.

Proposition 2. Suppose that the rate of a pre/post-filtered ECDQ
achieves (4). Among all the pre/post-filters that preserve the source
PSD, those that minimize the rate satisfy

|H(ω)|2 =
(λ2 + 4S2(ω))

1

2 − λ

2λS(ω)
, (5)

and

G(ω) = λH∗(ω), (6)

where λ is chosen to achieve a certain MSE.

The design of the pre/post-filter facilitates a tradeoff between
the rate and the MSE by adjusting λ. A derivation of this optimal
pre/post-filter, which is based on variational calculus, is given in [1].
We can verify the optimality of this pre/post-filter. First, it is easy
to see that the proposed pre/post-filter fulfills the PSD preserving
condition (1). Then, substituting (5) into (4), we can also see that
the rate coincides with (2), while the MSE [3]

D� =
1

2π

∫ 2π

0

|H(ω)G(ω)− 1|2S(ω) + |G(ω)|2dω (7)

equals (3).

3. SPECIFICATION OF THE PSD

PSD preservation requires prior knowledge of the source PSD, which
is generally unavailable in practical applications. The PSD must
be estimated from the signal and the estimated PSD must be made
available to both encoder and decoder. To this end, either forward
or backward adaptation can be used. We first discuss a generic
property, which shows that the coder structure reduces errors in the
PSD, then discuss forward adaption and backward adaptation, re-
spectively.

3.1. PSD Mismatch
PSD estimation must be used and therefore, the PSD may not be
exactly preserved. We now prove a nice property of the proposed
PSD-PQ: the PSD of the reconstruction is always closer than the
PSD estimate to the source PSD.

Proposition 3. Let Ŝ(ω) be an estimate of the source PSD S(ω),
and S̃(ω) be the PSD of the reconstruction of the proposed PSD-
PQ, for which the pre/post-filter are based on Ŝ(ω). For any ω, one
of the following conditions must be fulfilled:

0 < S̃(ω)− S(ω) < Ŝ(ω)− S(ω),

S̃(ω)− S(ω) = Ŝ(ω)− S(ω) = 0,

Ŝ(ω)− S(ω) < S̃(ω)− S(ω) < 0.

(8)

Proof. With elementary algebra, we can obtain

S̃(ω) = |H(ω)|2|G(ω)|2S(ω) + |G(ω)|2

= S(ω) +
(λ2 + 4Ŝ2(ω))

1

2 λ− λ2

2Ŝ2(ω)
(Ŝ(ω)− S(ω)). (9)

It is not difficult to verify that

0 <
(λ2 + 4S̃2(ω))

1

2 λ− λ2

2S̃2(ω)
< 1, (10)

which proves Proposition 3.

3.2. Forward Adaptation

In a forward adaptive system, the PSD is estimated from a segment
of unquantized signal. Many practical approaches exist to obtain an
estimate of the PSD [5]. For example, the autocorrelation method of
linear predictive coding (LPC) analysis yields a set of coefficients of
an auto-regressive (AR) signal model that can be used to describe the
PSD (e.g., by autoregressive spectral estimation). The description of
the PSD needs to be transmitted to the decoder. Several methods can
be used to quantize such an AR model-based description of the PSD
(e.g., by applying quantization in the line spectral frequency domain
[6] or by quantizing the spectral immittance pairs [7]). Each seg-
ment of the signal is then described by a two-stage description. One
stage comprises a quantized model and the other stage comprises a
quantized waveform.

The estimation error and quantization of the PSD description
lead to a mismatch from the source PSD, which is inevitable in prac-
tice. However, according to Proposition 3, the proposed method is
relatively robust to such a mismatch. It can also be seen that as λ
decreases, the similarity between the reconstructed and the source
PSD improves.

3.3. Backward Adaptation

We now consider a backward adaptive system. We divide a station-
ary process into segments. For each segment, we apply pre/post-
filter that are based on the estimation of the source PSD using previ-
ously reconstructed samples.

Let Ŝn(ω) be the PSD estimate, which is used to derive the n-th
pre/post-filter Hn(ω) and Gn(ω) according to (5) and (6).

The process starts with an initial PSD estimate Ŝ0(ω). In the
following, S̃n(ω) denotes the PSD of the reconstruction when the n-
th pre/post-filter are used. We are interested in the conditions under
which S̃n(ω) approaches the source PSD.
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Proposition 3 implies convergence of the backward adaptation.
The PSD estimate Ŝn(ω) is updated from the reconstructed signal
and therefore, is related to S̃n−1(ω). In the following proposition
we see that the PSD of the reconstruction approaches the source PSD
if Ŝn(ω) = S̃n−1(ω).

Proposition 4. If Ŝn(ω) = S̃n−1(ω) and Ŝ0(ω) > 0,∀ω, then

lim
n→∞

S̃n(ω) = S(ω). (11)

Proof. Using Ŝn(ω) = S̃n−1(ω), Proposition 3 implies that S̃n(ω)
converges. Taking limn→∞ to both side of (9) and solving for the
limit of S̃n(ω), we obtain that limn→∞ S̃n(ω) equals either S(ω) or
zero. However, when S̃0(ω) > 0, the latter situation violates Propo-
sition 3 unless S(ω) = 0. Both situations lead to limn→∞ S̃n(ω) =
S(ω) (although S(ω) = 0 is beyond our assumption).

Proposition 4 also implies that the rate-MSE performance of
the backward adaptive PSD-PQ converges to the optimality stated
in Proposition 1.

We note that the convergence speed depends on the rate. In par-
ticular, observing (9), if λ is large, the factor that governs the con-
vergence is close to 1 and the convergence becomes slow.

4. EVALUATION AND RESULTS

In this section we show that PSD-PQ has observable benefits. We
first show that a forward adaptive PSD-PQ performs well for real-
world audio coding. We then show that the backward adaptation
converges to the optimal rate-MSE performance.

4.1. Application to Audio Coding
As the benefits of PSD-PQ are perceptual in nature, subjective tests
are needed for its evaluation. To this purpose we inserted a predictive
PSD-PQ in a relatively standard platform and compare it to a rate-
MSE optimal quantizer.

4.1.1. Audio Coding Platform
We used a forward adaptive predictive audio coder as a platform for
our comparison. A diagram of the platform is shown in Fig. 2. The
platform consisted of perceptual filters and a predictive quantizer.
The perceptual filter and its inverse filter respectively perform trans-
forms to and from the perceptual domain where the MSE criterion
can be used [8]. The predictive quantizer is constructed by introduc-
ing a predictor into the basic scheme of Fig. 1. An advantage is that
the dependency in the source is reduced and thus the entropy coding
in the ECDQ does not need any memory. It is shown in [9] that such
a predictive quantizer asymptotically achieves the same rate-MSE
performance as the scheme in Fig. 1.

We used a short-term AR model (including the gain), extracted
from the input signal every 20 ms and interpolated to a 5 ms to
describe the spectral envelope of the input signal. The perceptual
weighting filters are derived from this short-term AR model. The
model estimation and perceptual weighting are similar to AMR-WB
[10].

The spectral structure of the signal can be seen as the product of
an envelope and a harmonic (fine) structure. The spectral envelope
is described by the short-term AR model. Accordingly, the pre/post-
filter can be decomposed as a concatenation of an envelope and a
pitch filter. To reduce computational complexity in our implementa-
tion we neglect the pitch pre-filter, which we found to have relatively

Table 1. Average MUSHRA results∈ [0, 100] of the proposed and
the reference audio coder for each test signal.

item content proposed reference
es01 English female speaker 76.17 73.83

es02 German male speaker 63.83 59.92

es03 English female speaker 68.50 63.08

sc01 Trumpet solo & orchestra 64.83 71.25

sc02 Symphonic orchestra 80.42 54.00

sc03 Contemporary pop music 78.50 59.00

si01 Harpsichord 56.17 66.08

si02 Castanets 86.42 67.75

si03 Pitch pipe 50.25 47.58

sm01 Bagpipes 47.17 59.42

sm02 Glockenspiel 70.42 75.17

sm03 Plucked strings 78.83 70.83

Average score 68.46 63.99

little effect. The pitch post-filter is effectively described by an all-
zero structure P (z) = β + γz−p, where β and γ are adjustable
parameters and p is the pitch period.

The platform operates on mono 16 kHz sampled audio signals.
The model parameters (the AR model and also the pitch) can be
transmitted with high fidelity at a rate of about 6 kbps. We adjusted
the rate for each input excerpt to obtain the average rate to be 18±5%
kbps, targeting an overall rate of 24 kbps, which is a common op-
erating rate for communication oriented codecs. This bit rate was
also chosen to illustrate the performance of PSD-PQ on a transition
between low and high rates. At low rates PSD-PQ has a clear per-
ceptual advantage over MSE-optimized quantization. For example,
it is known that the MSE-optimized quantization leads to “birdies”
and band limitation at low rates [11]. PSD-PQ does not introduce
these artifacts. At high rates, it is expected that the performance of
PSD-PQ is equivalent to MSE-optimized quantization [1].

4.1.2. Test Systems
To test the PSD-PQ system, we replaced the predictive quantizer of
the platform with two different quantizers: our predictive PSD-PQ
and the rate-MSE optimized reference predictive quantizer of [9].
The two quantizers are identical in structure. The only difference is
the specification of the pre/post-filter.

The reference predictive quantizer [9] is asymptotically rate-
MSE optimal for stationary Gaussian processes. It contains pre/post-

filters |Href(ω)|
2 = λ−1

(
1− min(S(ω),λ)

S(ω)

)
and Gref(ω) =

λH∗

ref(ω). These rate-MSE optimized pre/post-filters remove the
frequency components that are below a threshold (this corresponds
to the “reverse water-filling” phenomenon, which happens when
the optimal rate-MSE tradeoff for a stationary Gaussian process is
reached without the PSD preserving constraint).

4.1.3. Test Results
We compared the perceptual performance of the proposed and the
reference audio coder using the MUSHRA methodology [12]. In the
test we used twelve MPEG audio excerpts, resampled to 16 kHz, as
the test signals. The coded signals, together with a 3.5 kHz low-
passed signal and the unprocessed signal, were presented to listeners
in a random order. Twelve listeners participated in the test. The
average test results and respective 95% confidence intervals were as
follows: unprocessed signal 99.72 ± 0.43, proposed scheme 68.46
± 3.80, reference scheme 63.99 ±3.40, and 3.5 kHz signal 46.06
± 3.10. The averaged MUSHRA scores of the proposed and the
reference audio coder for each test signal are listed in Tab. 1.

415



X X̃Perceptual
weightingweighting
InverseECDQPre-filter Pre-filter Post-filter Post-filter

Pitch
estimator

Pitch Pitch

Short-term

Envelope Envelope

modeling

Predictor

+−

Fig. 2. Diagram of an audio coder platform. The dashed lines indicate negligible components.
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Fig. 4. Simulation results.

The proposed coder is in general better than the reference coder
since it preserves the source spectrum while the reference coder re-
moves some frequency bands due to reverse water-filling. The ad-
vantage is seen in most items, being most prominent in sc02, sc03,
and si02, for which the bandwidth plays a major role in perception. It
can also be noticed that the proposed coder performed slightly worse
than the reference coder for sc01, si01, sm01, and sm02. These sig-
nals have very pronounced pitch and/or multi-pitch structure, which
the short-term AR model and single pitch cannot model well. A bet-
ter signal modeling is expected to enhance the performance.

4.2. Backward Adaptation
To show that the backward adaptation is effective we considered a
stationary AR Gaussian process with the PSD shown in Fig. 3. A
predictive quantizer with the proposed backward adaptive pre/post-
filter was applied. An AR model based estimate of the PSD was
updated with an interval of 80 samples using a long asymmetric win-
dow that emphasizes recent samples. As a reference we used a PSD-
PQ with prior knowledge of the source PSD. The results are shown
in Fig. 4, which also includes the optimal rate given in Proposition 1.
As long as the S0(ω) > 0, ∀ω, the system converges to near-optimal
performance. A loss of about 0.254 bits/sample is caused by the
use of a scalar quantizer. The backward adaptive system provides
a performance that is essentially identical to that of PSD-PQ with
prior knowledge of the source PSD. The difference compared to the
prior-knowledge case is due to errors in the PSD estimation.

5. CONCLUSIONS

The results of this paper reconfirm that the basic philosophy of dis-
tribution preserving quantization (DPQ), to quantize the signal sub-
ject to the preservation of statistical properties is an effective method
for efficient audio coding across a broad range of rates. The ap-
proach operates like a conventional waveform coder at high rates,
and the constraint on preserving the statistical properties means that
the method operates like parametric coding at low rates.

In this paper we relaxed the DPQ constraint to a power spec-
tral density (PSD) constraint. This facilitates a lower computational
complexity and does not impact performance in the context of an
audio coder. The PSD constraint can be implemented using forward
and backward adaptation. We showed that the PSD constraint can
provide better subjective performance than a straightforward mini-
mum mean squared error criterion.
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