
MULTI-CHANNEL MAXIMUM LIKELIHOOD PITCH ESTIMATION

Mads Græsbøll Christensen

Dept. of Architecture, Design & Media Technology
Aalborg University, Denmark
mgc@create.aau.dk

ABSTRACT

In this paper, a method for multi-channel pitch estimation is

proposed. The method is a maximum likelihood estimator

and is based on a parametric model where the signals in the

various channels share the same fundamental frequency but

can have different amplitudes, phases, and noise characteris-

tics. This essentially means that the model allows for differ-

ent conditions in the various channels, like different signal-

to-noise ratios, microphone characteristics and reverberation.

Moreover, the method does not assume that a certain array

structure is used but rather relies on a more general model

and is hence suited for a large class of problems. Simulations

with real signals shows that the method outperforms a state-

of-the-art multi-channel method in terms of gross error rate.

Index Terms— Pitch estimation, microphone arrays,

multi-channel audio

1. INTRODUCTION

An important property of audio and speech signals is the

pitch, and the pitch is one of the most frequently used fea-

tures in the processing and analysis of acoustic signals. In

many cases, the pitch of a signal is simply related to the

fundamental frequency, which describes the number of times

a periodic signal repeats per time interval. Bandlimited pe-

riodic signals can be expressed as a finite weighted sum of

harmonically related sinusoids having frequencies that are

integer multiples of this fundamental frequency. The prob-

lem of finding the fundamental frequency from such periodic

signals buried in noise is called fundamental frequency or

pitch estimation. Over the years, many different methods for

pitch estimation have been devised from classical approaches

such as harmonic summation and product methods [1] to

more recent methods such as harmonic fitting [2], maximum

likelihood [3], optimal filtering [4], subspace methods [5] and

Bayesian methods [6,7]. For an overview, we refer the reader

to [5] and the references therein. Despite the host of methods

devoted to pitch estimation, it appears that very few methods

have been devised for estimating the pitch when multiple

channels are available, as would be the case in microphone

array processing or in studio recordings of music. Some

methods do exist, however, including those of [8, 9] and the

joint pitch and localization methods of [10, 11]. There are

several reasons why multi-channel pitch estimation should

be pursued when multiple channels are available. Firstly,

the presence of more data is always beneficial in frequency

estimation problems. Secondly, the conditions under which

the signals have been recorded may differ from channel to

channel and it may be difficult to pick one channel a priori

as having the best conditions. Hence, a method using all

channels is preferable. Also, spatial localization may make

it fairly easy to attenuate noise from certain angles, although

we shall not seek to exploit this here.

In this paper, a novel method for multi-channel pitch es-

timation is presented. It is a maximum likelihood estimator

based on a Gaussian assumption and a parametric model of

signal of interest. In this model, the fundamental frequency

is shared across channels while amplitudes, phases and noise

characteristics are allowed to be different for each channel.

The model thus takes into account that, e.g., the signal in each

channel may have been filtered and that the noise level may

be different. Hence, the presented method is based on a quite

general model that can be assumed to work in many different

situations. An important aspect of this work is that the inte-

gration across channels is done in a mathematically tractable

manner.

The rest of the paper is organized as follows: In Section

2, the underlying parametric model and statistical assump-

tions are presented after which the proposed method is de-

rived in Section 3. Then, in Section 4 some experimental re-

sults demonstrating the advantages of the proposed method

are presented. Finally, we conclude on the work in Section 5.

2. FUNDAMENTALS

We will now present the signal model and associated as-

sumptions. The proposed method operates on a signal vector

xk(n) ∈ C
M at time n (termed a snapshot) for the kth

channel, defined as xk(n) = [ xk(n) · · · xk(n+M − 1) ]
T

which is constructed from the observed signal from the kth

channel xk(n), for n = 0, . . . , N − 1. We model this vector

as a sum of L harmonically related complex sinusoids in
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Gaussian noise ek having covariance matrix Qk, i.e.,

xk(n) = Z(n)ak + ek(n), (1)

with ak = [Ak,1e
jφk,1 · · · Ak,Le

jφk,L ]T being a vector con-

taining the complex amplitudes of the signal in the kth chan-

nel. Moreover, the matrix Z(n) is a Vandermonde matrix at

time n, defined as Z(n) =
[

z1(n) · · · zL(n)
]
, where

the mth entry of the column vector zl(n) ∈ C
M is defined

as [zl(n)]m = ejω0l(n+m−1) with ω0 ∈ Ω0 being the funda-

mental frequency, i.e., the parameter we seek to find in the set

Ω0 = (0, 2π/L). We assume that G vectors xk(n) have been

observed for each channel. We define the signal and noise

parameter vector θk for the kth channel containing the fun-

damental frequency ω0, the complex amplitudes {Ak,le
jφk,l}

and the noise covariance matrix Qk. Regarding the model or-

der L, we remark that it is possible to extend the proposed

method to joint fundamental frequency and order estimation

using the MAP principle [5]. However, for simplicity, we do

not describe that here. Assuming that Qk is invertible, the

likelihood function (for complex signals) of xk(n) can then

be written as

p(xk(n);θk) =
1

πMdet(Qk)
e−eH

k (n)Q−1
k ek(n), (2)

with det(·) denoting the matrix determinant. Now, assum-

ing that the deterministic part is stationary and ek(n) is in-

dependent and identically distributed over n as well as in-

dependent over k, the likelihood of the observed set of vec-

tors {{xk(n)}G−1
n=0 }Kk=1 (or {xk(n)} for short) across chan-

nels can be written as

p({xk(n)}; {θk}) =
K∏

k=1

G−1∏
n=0

p(xk(n);θk)

=

K∏
k=1

1

πMGdet(Qk)G
e−

∑G−1
n=0 eH

k (n)Q−1
k ek(n).

(3)

There are several ways in which the noise covariance matrix

can be estimated, but they are, however, all fairly involved

and they are hence best avoided. Moreover, it may be difficult

to say anything about the noise covariance matrix Qk a pri-

ori. In that case, the best solution is to assume that the noise

is white in each channel1 but that the noise has different vari-

ance σ2
k, i.e.,Qk = σ2

kI. Similar arguments hold regarding

the assumption of the noise being independent across chan-

nels. With the above assumptions, the likelihood function for

a single snapshot for channel k reduces to

p(xk(n);θk) =
1

(πσ2
k)

GM
e
− 1

σ2
k

‖ek(n)‖2

, (4)

and the log-likelihood function is then ln p(xk(n);θk) =
−M ln (πσ2

k) − 1
σ2
k
‖ek(n)‖2, which across all channels and

1The white Gaussian distribution can be shown to be the one maximizes

the entropy of the noise [12].

snapshots under the aforementioned conditions yields

ln p({xk(n)};θk) =

−GM

K∑
k=1

ln (πσ2
k)−

K∑
k=1

G−1∑
n=0

‖ek(n)‖2
σ2
k

. (5)

3. PROPOSED METHOD

We will now proceed to derive the proposed estimator. To

do this, we first observe that the noise variance σ2
k and the

complex amplitude vector ak are specific to channel k while

the fundamental frequency in Z is shared among all channels.

Hence, the two former parameters can be estimated directly

from the individual channels (for a particular fundamental fre-

quency candidate). The maximum likelihood estimate of the

amplitudes for channel k can readily be shown to be

âk =

(
G−1∑
n=0

ZH(n)Z(n)

)−1 G−1∑
n=0

ZH(n)xk(n). (6)

This, in turn, can be used to form a noise estimate for n =
0, . . . , G − 1 as êk(n) = xk(n) − Z(n)âk and, from this, a

maximum likelihood noise variance estimate for channel k as

σ̂2
k =

1

GM

G−1∑
n=0

‖êk(n)‖2. (7)

Inserting these quantities into (5) then yields the concentrated

log-likelihood for channel k at time n ln p(xk(n);ω0) =
−M lnπ−M ln σ̂2

k, which depends only on the fundamental

frequency ω0, and the maximization of this function over the

fundamental frequency would then leads to the maximum

likelihood estimate for channel k. For all n and k, this yields

ln p({xk(n)};ω0) = −GMK lnπ −GM

K∑
k=1

ln σ̂2
k. (8)

The maximum likelihood estimator (MLE) can finally be

stated as

ω̂0 = arg min
ω0∈Ω0

K∑
k=1

ln σ̂2
k. (9)

To summarize how the estimator works for each candidate

fundamental frequency ω0 ∈ Ω0, the amplitudes are first

found using (6) where after the noise variance is estimated for

each channel k using (7). Then, the variances are integrated

across channels as in (8) and the fundamental frequency can

then be determined using (9). An interesting special case

can be obtained as follows. For M = N only one signal

vector will be available for each channel. We denote this as

xk = xk(0) and similarly for the other quantities. Then the

channel k estimators reduce to

âk =
(
ZHZ

)−1
ZHxk and σ̂2

k =
xH
k Π⊥

Zxk

N
(10)
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Parameter Value Parameter Value

Sound vel. 340 m/s Room Dim. [5 4 6 ] m

Source pos. [2 3.5 2] m Samples 4096

Reverb time 0.4 s Mic. Hypercard.

Ref. order -1 Number of Mic. 4

Mic. pos. Random Mic. orient. Random

Table 1. Experimental settings for the mirror method.

where ΠZ = Z
(
ZHZ

)−1
ZH and Π⊥

Z = I − ΠZ . Not-

ing then that the columns of Z are asymptotically orthogonal,

i.e., limM→∞ MΠZ = ZZH , the resulting estimator can be

written as follows:

ω̂0 = arg min
ω0∈Ω0

K∑
k=1

ln

(
‖xk‖2 − 1

N
‖Zxk‖2

)
. (11)

Finally, we observe that ‖Zxk‖2 is just the sum over the

squared magnitude of the Fourier transform of xk(n), de-

noted Xk(ω) evaluated in a set of frequencies (in this case

those of the candidate harmonics), i.e., it can be evaluated ef-

ficiently using an FFT as ‖Zxk‖2 =
∑L

l=1 |Xk(ω0l)|2. This

can be seen as a simple extension of the classical harmonic

summation method [1]. It should be noted that the amplitude

estimate in (6) also can be computed efficiently for large M
this way, although a phase shift must also be introduced to

compensate for Z(n) being time-varying. It should be noted

that had we assumed that the noise variance was known, the

result would have been different. In that case, the estimator

would reduce to the maximizer of the weighted sum over the

spectra across all channels, i.e.,
∑K

k=1

∑L
l=1 |Xk(ω0l)|2/σ2

k.

Moreover, if we also assume that the noise variance is the

same for all channels, the resulting estimator would simply

be the maximizer of
∑K

k=1

∑L
l=1 |Xk(ω0l)|2. Both are to

be contrasted with the sum over the logarithm in (11), which

shows that the way in which the cost function should be inte-

grated across channels depends on whether the noise variance

is known and the same.

4. EXPERIMENTAL RESULTS

To investigate the performance of the proposed method we

proceed as follows. We will follow a procedure similar to the

test methodology of [9]. A set of single-pitch audio mono sig-

nals from the EBU SQAM discs is used, namely the trumpet,

violin and horn signals. The signals are down-sampled by a

factor of four from the original 44.1 kHz sampling frequency

and converted to complex signals using the Hilbert transform,

and the signals are processed (by all algorithms) in segments

of 40 ms with 50 % overlap and an FFT size of 8192. From

these signals, four different channels are generated using E.

Habets’ implementation2 of the mirror method [13] with set-

2http://home.tiscali.nl/ehabets/rir_generator.html

tings as shown in Table 1. Note that microphone positions and

orientations were picked randomly. To demonstrate the merits

of the proposed method, we add white Gaussian noise to each

channel and test two different scenarios: one in which the

noise level is the same in all channels, a scenario we will refer

to as symmetrical, and one where the noise level is different in

each channel, which we will refer to as asymmetrical. For the

asymmetrical scenario, the SNRs in the individual channels

were -15, -10, -5, and 0 dB, respectively, offset by an overall

SNR value. A ground truth pitch is estimated from the clean

multi-channel signal using the MPF method [9]. We will

compare the proposed method to the MPF method, which,

in [9], was demonstrated to outperform a multi-channel ver-

sion of YIN [14] and the method of [8]. We will evaluate

the fast, approximate version in (11) of the proposed method

(denoted MLE), which relies on FFTs to compute the log-

likelihood. Finally, we will, for reference, also compare to

the performance obtained with the simple multi-channel ex-

tension of the classical harmonic summation method (denoted

HS) mentioned in Section 3, which is also an approximate

maximum likelihood estimator when the noise variance is the

same in all channels. For the methods that require that the

model order is estimated, we used the MAP criterion [5]. As

in [9], we will measure the gross error rate (GER), defined

as a relative error of more than 20 % relative to the ground-

truth, under different conditions. It should be noted that this

methodology favors the MPF method as any consistent error

in estimates obtained from the clean and noisy multi-channel

signals will not be punished for this method. The results are

shown in Figures 1(a) and 1(b) for the two scenarios, respec-

tively. A number of observations can be made from the fig-

ures. The proposed method performs the best for both sce-

narios having the lowest GER. The HS method can be seen

to perform well for the symmetrical case, as predicted by the

theory. However, it can also be seen to to break down when

the noise level differs between channels. The MPF method

is capable of handling this scenario due to the normalization

procedure in [9]. However, it can generally be seen to be more

sensitive to low SNRs than the proposed method.

5. CONCLUSION

In this paper, a novel multi-channel pitch estimator has been

proposed. The method is based on a maximum likelihood ap-

proach, and it is based on a parametric model where the signal

in each channel is modeled as a sum of harmonically related

sinusoids in noise. The amplitudes and phases are allowed to

vary across channels to account for different acoustic propa-

gation paths and the signal-to-noise level is allowed to vary

as well. The model is hence quite general and can be used

in many different scenarios. Simulations demonstrate that the

method generally performs well and outperforms a state-of-

the-art method, especially under adverse conditions.
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Fig. 1. Performance measured in terms of gross error rate as a function of the SNR in dB for (a) symmetrical noise level and

(b) asymmetrical noise level. The SNR for the latter case is the overall SNR.

6. REFERENCES

[1] M. Noll, “Pitch determination of human speech by har-

monic product spectrum, the harmonic sum, and a maxi-

mum likelihood estimate,” in Proc. Symposium on Com-
puter Processing Communications, 1969, pp. 779–797.

[2] H. Li, P. Stoica, and J. Li, “Computationally efficient

parameter estimation for harmonic sinusoidal signals,”

Signal Processing, vol. 80, pp. 1937–1944, 2000.

[3] B. G. Quinn and P. J. Thomson, “Estimating the fre-

quency of a periodic function,” Biometrika, vol. 78(1),

pp. 65–74, 1991.

[4] M. G. Christensen, J. L. Højvang, A. Jakobsson, and

S. H. Jensen, “Joint fundamental frequency and order

estimation using optimal filtering,” EURASIP J. on Ad-
vances in Signal Processing, vol. 2011(1), pp. 13, 2011.

[5] M. G. Christensen and A. Jakobsson, Multi-Pitch Esti-
mation, vol. 5 of Synthesis Lectures on Speech & Audio
Processing, Morgan & Claypool Publishers, 2009.

[6] S. Godsill and M. Davy, “Bayesian harmonic models for

musical pitch estimation and analysis,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Processing, 2002,

vol. 2, pp. 1769–1772.

[7] A. T. Cemgil, H. J. Kappen, and D. Barber, “A genera-

tive model for music transcription,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 14,

no. 2, pp. 679–694, Mar. 2006.

[8] L. Armani and M. Omologo, “Weighted auto-

correlation-based f0 estimation for distant-talking in-

teraction with a distributed microphone network,” in

Proc. IEEE Int. Conf. Acoust., Speech, Signal Process-
ing, 2004, vol. 1, pp. 113–116.

[9] F. Flego and M. Omologo, “Fobust f0 estimation based

on a multi-microphone periodicity function for distant-

talking speech,” in Proc. European Signal Processing
Conf., 2006.

[10] M. Kepesi, F. Pernkopf, and M. Wohlmayr, “Joint

position-pitch tracking for 2-channel audio,” in

Proc. Int. Workshop Content-Based Multimedia Index-
ing, 2007, pp. 303–306.

[11] J. R. Jensen, M. G. Christensen, and S. H. Jensen, “Joint

DOA and Fundamental Frequency Estimation Methods

based on 2-D Filtering,” in Proc. European Signal Pro-
cessing Conference, 2010.

[12] G. L. Bretthorst, “An introduction to parameter esti-

mation using Bayesian probability theory,” in Max. En-
tropy and Bayesian Methods, P. Fougere, Ed., pp. 53–79.

1990.

[13] J. B. Allen and D. A. Berkley, “Image method for ef-

ficiently simulating small-room acoustics,” J. Acoust.
Soc. Am., vol. 65(4), pp. 943–950, 1979.

[14] A. de Cheveigné and H. Kawahara, “YIN, a fundamen-

tal frequency estimator for speech and music,” J. Acoust.
Soc. Am., vol. 111(4), pp. 1917–1930, Apr. 2002.

412


