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ABSTRACT

In this paper, a novel algorithm for upscaling ambisonic sound scenes
in the frequency domain is presented. This algorithm makes use
of compressed sensing techniques to calculate a set of upscaling
filters. These filters are then used to increase the spherical harmonic
order of a set of ambisonic sound signals to higher orders. Upscaled
ambisonic sound scenes have a greater spatial resolution, which
allows more loudspeakers to be used during the playback, resulting
in a larger sweet spot and improved sound quality. A formal listening
test was conducted to evaluate the perceptual quality of sound fields
reproduced using this technique. Results show that the proposed
algorithm significantly improves the perceptual fidelity of the sound
field reproduction, in comparison to classical ambisonic methods.

Index Terms— Acoustic Signal Processing, Compressed Sens-
ing, Signal Reconstruction, Audio Recording

1. INTRODUCTION

Higher order ambisonics (HOA) [1] is a popular spatial sound field
reproduction technique based on spherical acoustics. In the HOA
framework, the sound scene is represented as a set of signals associ-
ated with each spherical harmonic component of the sound field up to
a given truncation order L. These signals are referred to as order-L
HOA signals. The order of the HOA signals directly influences the
spatial resolution of the captured sound scene as well as the size of the
region where the recorded sound field may accurately be reproduced
with an array of loudspeakers. This region is commonly referred to
as the sweet spot.

Typically a multichannel microphone array, such as the spherical
microphone array [2], is used to acquire the HOA signals. Physical
and practical limitations in the array acquisition system, such as
the number of microphone sensors, limit the maximum HOA order
at which the sound scene may be acquired. Hence given a certain
microphone array, there are limitations on the spatial resolution and
accuracy at which the sound field is reproduced.

Recent studies [3, 4, 5] have investigated the application of com-
pressed sensing (CS) [6] techniques in order to overcome these lim-
itations. In [5], a time-domain algorithm to upscale HOA sound
scenes to higher orders was presented. Upscaling a HOA sound
scene increases its spatial resolution, which results in a larger sweet
spot and improved sound quality when the sound field is reproduced.
The work presented in this paper aims to extend this CS-based HOA
upscaling approach, with the development of a frequency-domain
upscaling algorithm. This new algorithm is presented in Section 2. A
formal listening test was conducted to evaluate the perceptual quality
of the sound field reproduced when using the frequency- and time-
domain HOA upscaling algorithms. The results of this listening test
are presented in Section 3.

Fig. 1. This flowchart shows an overview of the frequency-domain
HOA sound scene upscaling algorithm.

2. FREQUENCY DOMAIN HOA UPSCALING
ALGORITHM

In this section, the proposed frequency domain HOA upscaling al-
gorithm is described. This algorithm is summarized in Figure 1.

2.1. Short-Time Fourier Analysis

We start with a vector of order-L time-domain HOA signals and apply
a Short-Time Fourier Transform (STFT) to obtain a time-frequency
tiling of the HOA signals with time index t and frequency bin k. In
other words, we have:

b(t, k) = [b00(t, k), b
−1
1 (t, k), . . . , bml (t, k), . . . , bLL(t, k)]

�
,
(1)

where b(t, k) is the vector of the order-L HOA signals in the STFT
domain, the length of the STFT analysis window is 2K and bml (t, k)
is the STFT-domain HOA signal corresponding to order l and de-
gree m, with m ∈ [−l, . . . , l].

2.2. Sparse Plane-Wave Decomposition

We now describe the sparse plane-wave decomposition. For each
frequency bin and time index, we aim to calculate a vector of P
plane-wave signals, s(t, k), such that:

b(t, k) = Ys(t, k) , (2)
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where

s(t, k) = [s1(t, k), s2(t, k), . . . , sP (t, k)]
�

(3)

and Y is the spatial dictionary used for the plane-wave decomposition.
Matrix Y represents the contribution of each plane-wave source to
the HOA signals and is given by:

Y =

⎡
⎢⎢⎢⎣

Y 0
0 (θ1, φ1) Y 0

0 (θ2, φ2) . . . Y 0
0 (θP , φP )

Y −1
1 (θ1, φ1) Y −1

1 (θ2, φ2) . . . Y −1
1 (θP , φP )

...
...

. . .
...

Y L
L (θ1, φ1) Y L

L (θ2, φ2) . . . Y L
L (θP , φP )

⎤
⎥⎥⎥⎦ ,

(4)
with Y m

l (θ, φ) being the spherical harmonic function of order l and
degree m, and (θi, φi) is the azimuth and elevation of the ith plane-
wave source. The plane-wave directions are regularly distributed over
a sphere, with the directions obtained by recursive subdivision of an
icosahedron. The size of the dictionary is chosen such that the number
of plane-waves is much greater than the number of order-L HOA
signals, i.e. P � (L+ 1)2. The large dictionary size is chosen such
that the order-L HOA signals may be upscaled to a higher order L′.
For this super-resolution operation to be successful, it is necessary for
the number of plane-waves in the basis to be greater than the number
of order-L′ HOA signals, i.e. P ≥ (L′ + 1)2.

With P > (L+1)2, the linear system (2) is underdetermined and
therefore contains infinitely many solutions. The classical method to
solve (2) is to use the Moore-Penrose pseudo-inverse, giving the least-
norm solution. However, this solution is not necessarily perceptually
optimal [7]. This can be attributed to the fact that, out of all the
possible plane-wave decompositions that mathematically explain the
observed sound field, the least-norm solution is the one that distributes
the sound energy the most evenly across space [3]. This is not a
physically reasonable objective, given that most sound sources are
discretely located in space. Moreover, it is reasonable to assume that
the sound field consists of only a small number of active plane-wave
sources at any instance in time. Therefore an alternative approach is
one inspired by CS theory, which selects the solution that is the most
sparsely distributed in space.

Applying CS formalism to (2), Y is referred to as the ‘measure-
ment matrix’. For HOA signals where the truncation order is quite
low, this matrix is reasonably coherent and therefore is a poor can-
didate to satisfy the Restricted Isometry Property (RIP), which is
required to guarantee perfect reconstruction [6]. Nonetheless, our
aim is not perfect reconstruction, but rather applying super-resolution
analysis that improves the spatial sound field reconstruction. In other
words, given a sparse plane-wave sound field, the reconstruction
should be better than what is provided by the least-norm solution.

A naı̈ve approach to performing frequency-domain sparse
plane-wave decomposition would be to solve (2) using a single-
measurement vector type convex optimization problem for each
frequency bin, as described by:

minimize ‖s(t, k)‖1
subject to Ys(t, k) = b(t, k) , (5)

where ‖.‖ denotes the l1-norm. However, this approach is vulnerable
to discontinuities that may arise between neighbouring frequency bins,
which results in audible artefacts when playing back the upscaled
HOA sound scene over an array of loudspeakers or headphones. The
approach taken in this paper to minimise this vulnerability is to solve
a multiple-measurement vector (MMV) type convex optimization

problem for each frequency bin, i.e.:

minimize ‖S(n, k)‖12
subject to YS(n, k) = B(n, k) . (6)

where:

• B(n, k) is the matrix containing the T consecutive STFT
samples of the HOA signals for frequency k and time window
n:

B(n, k) = [b(nτ+1, k) , b(nτ+2, k) , . . . , b(nτ+T, k)]

n ∈ N , (7)

with τ being the increment between successive analysis win-
dows (typically τ = 0.5T ).

• S(n, k) is the matrix of the plane-wave signals:

S(n, k) = [s(nτ+1, k) , s(nτ+ 2, k) , . . . , s(nτ+T, k)] .
(8)

• ‖.‖12 denotes the l12-norm, which is defined as:

‖A‖12 �
∑
i

√∑
j

|Aij |2 . (9)

Note that the l12-norm promotes sparsity only in the spatial dimension
for the time-windowed data. It is important that the analysis window
is chosen short enough to ensure sufficient sparsity and that a small
time increment, τ , is used in order to avoid abrupt changes in the
sound scene.

Finding the plane-wave signals is equivalent to finding a demixing
matrix, D(n, k), such that:

S(n, k) = D(n, k)B(n, k) . (10)

The effect of D(n, k) is to demix the HOA signals into plane-wave
signals. Using Eq. (10), the optimization problem (6) can be refor-
mulated as:

minimize ‖D(n, k)B(n, k)‖12
subject to YD(n, k) = I , (11)

where I is the identity matrix. An Iteratively Reweighted Least
Squares (IRLS) algorithm [8] is applied to solve Problem (11)
for D(n, k).

The size of the optimization problem (6) increases with the num-
ber of measurement vectors, typically a few hundred to a few thousand
in our implementation. However these vectors are not linearly inde-
pendent, therefore the size of the measurement matrix B(n, k) can be
reduced by expressing it in the subspace defined by its first (L+ 1)2

singular vectors, as proposed in [9] and detailed in [5]. This data
reduction lowers the computational cost of solving the optimization
problem. For example, in the case of order-1 HOA signals with 1024
measurement vectors, B(n, k) is a 4 × 1024 matrix. Once expressed
in the proper subspace, the size of the measurement matrix is reduced
to 4 × 4. Note that this process does not affect the result of the
optimization problem.
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2.3. HOA Upscaling

Once the demixing matrix is obtained, an upscaling matrix is cal-
culated, whose action is to re-encode the order-L HOA signals to a
higher order, L′. The upscaling matrix for frequency bin k and time
analysis window n is given by:

U(n, k) = (1− α)U(n− 1, k) + αY′D(n, k) (12)

0 ≤ α ≤ 1 ,

where α is the forgetting factor, Y′ is defined similarly to (4) but now
includes spherical harmonic components up to order L′ and U(n, k)
is the upscaling matrix at frequency bin k, such that:

B′(n, k) = U(n, k)B(n, k) , (13)

where B′(n, k) now includes spherical harmonic components up
to order L′. The recursive nature of the upscaling matrix given in
Eq. (12) acts to smooth any sharp changes that may occur between
successive time windows.

To work in the time domain, the U(n, k) matrices are combined
across frequency and the inverse Fourier transform is applied to obtain
a matrix of finite impulse response filters, U(n)(t). The order-L time-
domain HOA signals are then convolved with the upscaling filters to
obtain the order-L′ time-domain HOA signals for the nth time frame:

b′ (n)(t) = U(n)(t)� b(n)(t) , (14)

where b(n)(t) and b′ (n)(t) are the time-domain vectors of order-
L and L′ HOA signals for the nth time frame and � denotes the
convolution of a vector of signals by a matrix of filters. The upscaled
HOA signals are combined across the time frames using an overlap-
and-add technique.

3. LISTENING TEST

3.1. Method

A formal listening test was performed to perceptually evaluate the
quality of the sound field reproduced using the frequency-domain
HOA upscaling algorithm described here with the time-domain HOA
upscaling algorithm described in [5]. The HOA sound scenes were
upscaled from order-1 to order-4. The sound fields reproduced using
these algorithms were compared to sound fields reproduced using
the classical HOA approach with HOA orders 1, 2, 3 and 4. In the
classical HOA approach, the loudspeaker signals are obtained using
fixed decoding filters which are calculated by minimising an l2-norm,
as described in [10]. The listening test was performed in an anechoic
room containing a spherical array of 32 loudspeakers [10]. The MUlti
Stimulus test with Hidden Reference and Anchor (MUSHRA) [11]
paradigm was used to conduct the test. The reference stimulus was
HOA order-4, which was decoded to all 32 loudspeakers. The anchor
signals were HOA order-1 signals, band-pass filtered with low and
high cutoff frequencies of 500 and 4000 Hz, respectively, and decoded
to all 32 loudspeakers. The upscaled HOA sound scenes were decoded
to all 32 loudspeakers, while HOA orders 1, 2 and 3 were decoded to a
subset consisting of 8, 12 and 24 loudspeakers, respectively. Note that
these numbers of loudspeakers were chosen to optimize the quality
of the playback for the different HOA orders. In the MUSHRA test,
the subjects were asked to grade the quality of the rendered scene of
each stimulus with how closely it matched the reference. Subjects
were encouraged to move their head, while remaining seated, in order
to gauge the size of the sweet spot. Each stimulus was rated between
0 and 100.

Three virtual sound scenes were used for the listening test: (1) a
single talker; (2) 3 talkers consisting of two males and one female;
(3) a rock-music band consisting of a singer, a piano, a bass guitar,
drums and backing vocals. The sound scenes were simulated in the
same reverberant room using MCROOMSIM [12], a multi-channel
room acoustics simulator. This simulator has the ability to directly
provide the HOA signals for the simulated reverberant scene. The
average reverberation time (T30) and speech clarity index (C50) of
the room were 0.32 seconds and 23 dB, respectively.

For both the frequency and time-domain HOA upscaling algo-
rithms, a plane-wave dictionary size of 92 components was used.
The length of the time analysis window was 1024 samples long and
the sample frequency was 48 kHz. The filter bank used in the time-
domain HOA upscaling algorithm consisted of 125 sub-bands. The
length of the STFT analysis window in the frequency-domain HOA
upscaling algorithm was 256 samples long.

3.2. Results

A total of twelve subjects participated in the listening test. Statistical
analysis was performed on the results, with Figure 2 showing the
box plots for the three sound scenes. The red plus symbols represent
outlying scores. The upper and lower horizontal bars on the vertical
black dashed line represent the upper and lower bounds of the data
(excluding the outlying scores). The upper and lower horizontal bars
of the blue box represent the upper and lower quartiles of the data
and the red horizontal bar inside the blue box represents the median.
The 95% confidence interval around the median line is indicated by
the extent of the slanted lines extending above and below the median
line, the “notch”.

In all cases both the frequency and time-domain HOA upscaled
sound fields were perceived much closer to the reference than the
HOA order-1 reproduced sound field. In other words, the two up-
scaling methods significantly improved the quality of the playback.
This improvement is observed in all scenes, which proves that the
CS-based methods are relatively robust to the complexity of the sound
scene. Furthermore, in all scenes, the performance of the upscaling
algorithms is on par or better than HOA order-2 and HOA order-
3. The frequency-domain algorithm appears to perform better than
the time-domain algorithm in every case, although this result is not
statistically significant in scene 3 given the variability in the ratings.

Finally, note that the HOA order-2 reproduced sound field was
rated slightly better than the HOA order-3 sound field in scene 1,
which was unexpected. This may be attributed to the fact that, in the
order-3 case, the number of loudspeakers (24) used was much greater
than the number of HOA signals (16).

4. CONCLUSION

In this paper, we have presented a novel frequency-domain algorithm
for upscaling HOA sound scenes to higher orders. Upscaled HOA
sound scenes have a greater spatial resolution, which allows more
loudspeakers to be used during the playback, resulting in a larger
sweet spot and improved sound quality. Results of a formal listening
test were presented, showing that the proposed algorithm significantly
improves the fidelity of the sound field reproduction when compared
to classical HOA playback.

The algorithm is based on a sparse plane-wave decomposition
of the sound field. The results of the listening test indicate that the
proposed upscaling method is robust against the presence of multiple
sources in a reverberant environment.
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Fig. 2. Box plots showing the perceived quality for each spatial sound
field reproduction method. The top, middle and bottom plots are the
results for scenes 1, 2 and 3, respectively. Refer to the text for an
explanation of the various elements in the box plot.

Performing the sparse plane-wave decomposition in the frequency
domain opens new prospects for the application of CS techniques to
spatial audio analysis and synthesis using microphone arrays. That is
to say, having a frequency-dependent plane-wave dictionary allows
one to work directly in the microphone domain, as opposed to the
spherical harmonic domain. This has the potential to reduce the effect
of spatial aliasing when using microphone arrays and the authors
intend to explore this idea in future work.

5. REFERENCES

[1] J. Daniel, Représentation de champs acoustiques, application
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