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ABSTRACT 

The implementation of 3D sound reproduction is well 
founded theoretically, but the requirements for the number 
of loudspeakers and array geometry make it impractical 
using conventional technology. In practice, a 2D array of 
loudspeakers is commonly used which restricts the 
reproduction of sources to those in the horizontal plane and 
requires a restricted form for the free-field loudspeaker 
driving signals based on the sectorial spherical harmonics. 
However, reflections can impair reproduction quality when 
using the free-field solution. Since first-order loudspeakers 
are commercially available which increase the direct to 
reflected sound ratio, we extend the sectorial solution for the 
loudspeaker excitation signals to the first-order case. We 
also investigate the reproduction accuracy for both zeroth 
and first-order loudspeakers using numerical simulations. 

Index Terms— Sound reproduction, Ambisonics, 
spherical harmonics

1. INTRODUCTION 

Sound reproduction systems aim to use sufficient 
information from a sound field to allow reproduction over a 
volume of space larger than a human head, so that a listener 
hears the original sound field. The Helmholtz integral 
equation shows that this is possible in theory, and wave-field 
synthesis (WFS) is an approach based on this integral [1,2]. 
Alternatively, the spherical harmonic description of sound 
fields shows that the field may be recorded by calculating 
the spherical harmonic mode responses and reproducing 
these using a 3D array of loudspeakers. Higher order 
Ambisonics (HOA) is based on this approach [2–7]. 
Ambisonics may be viewed as a method for collecting sound 
from a given direction and assigning that sound to a 
loudspeaker in the same direction to reproduce the field.  

The number of loudspeakers required for reproduction 
over a radius r and wavenumber k is approximately 

( )2
1kr +  [6,7]. For example reproduction up to 8 kHz over 

a sphere of radius 100 mm (kr ~ 15) would require 250 
loudspeakers. Clearly, 3D reproduction in the home is 
impractical using conventional technology.  

The theory of 2D reproduction is based on cylindrical 
coordinate solutions to the wave equation, and assumes a 
height-invariant sound field [4,7,8]. The number of sources 
required is approximately 2 1kr +  which for large kr is 
2/[kr] of the number for the 3D case (31 loudspeakers using 
the example above). While challenging, this is more 
achievable than 3D reproduction. However the cylindrical 
coordinate approach is not realistic since loudspeakers 
typically approximate monopoles and produce a 1/r
attenuation with distance r.   

One solution to the problem for WFS is known as 2.5 D 
reproduction, and is obtained by applying the stationary 
phase approximation to the line source amplitudes to allow 
implementation using monopole sources [4,9]. A spherical 
harmonic solution to the 2D reproduction problem may also 
be determined for a circular array of monopoles using only 
the sectorial sound field components [4,10].  

Sound reproduction in rooms produces reflections from 
the room surfaces which can compromise perceived 
localisation. These can be reduced using active 
compensation [6]. A simpler alternative is to reduce 
reflections by using fixed directivity loudspeakers, which are 
commercially available [11]. This paper therefore considers 
2D sound reproduction using a circular array of 
loudspeakers with fixed first-order directivities. We 
generalise the sectorial mode match solution in [10] to the 
first order case, and investigate the accuracy of sound field 
reproduction for zeroth and first-order loudspeakers by 
numerical simulation, and by comparison with the 
cylindrical 2D case and with a pressure matching solution.  

2. SOUND FIELD REPRODUCTION USING FIRST 
ORDER SOURCES 

The sound field in a source-free region of space can be 
expressed in spherical coordinates as [12] 
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where [13] 
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is the (n,m)th spherical harmonic, ( ).m

n
P  is the associated 

Legendre function, and ( )m

n
A k  are the frequency dependent 

coefficients which are the Fourier transforms of the complex 

signals representing the sound field. Since ( )n
j kr  is small 

for n kr>  a maximum integer order 
max

/ 2n N ekr= =  is 

sufficient to represent the field [14]. The spherical 

harmonics ( ),m

m
Y θ φ  are termed the sectorial harmonics, 

and these produce lobes only in the (x,y) plane. To examine 
the sectorial approximation, we first rewrite Eq. (1) as 

( ) ( ) ( ) ( ), , , , 0
M M
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where the azimuthal part of the spherical harmonic is 
explicitly written and M = N is the expansion order,  

producing a total of ( )2
1M +  terms. The field may thus be 

viewed as consisting of a sum of 2M + 1 ‘phase modes’ 

( )exp imφ , with each term consisting of a sum of terms over 

n. For 2θ π= the ( )1 2M M+  spherical harmonics for 

2 1, 0,1, ...n m q q= + + =  are zero (Fig. 1). Furthermore, 

for sources near 2
s

θ π=  the spherical harmonic spectrum 

tends to have the largest magnitudes for n = |m|. In this case 
the sectorial approximation  
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M

m m im
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is – as will be verified below – a reasonably close 
approximation to the sound field, which can be represented 
by a sum of 2M + 1 terms, a considerable reduction from the 
(M + 1)2 terms required for the full expansion.  
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Figure 1: Sectorial harmonic approximation 

Consider a single source at 
s

r  which has a first order 

response consisting of a monopole term and a radial dipole 
term [11]  
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where [ ]0,1a ∈  is the first-order weighting parameter and γ
is the angle from the loudspeaker axis. For a = 0.25 the 
response is hyper-cardioid which produces the maximum 
direct to reverberant ratio [11]. The spherical harmonic 
expansion of the first order source is [11] 
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where ( ) ( ) ( ) ( ), 1
n n n

b kr a iah kr a h kr> > >
′= + − , r<  denotes 

the smaller of r and rs and r>  the larger.  

The sound field produced by a continuous circular 
distribution of first-order sources at a radius rL with 

weighting ( )s
w φ  is  
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Expressing the weight function as 
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and equating to Eq. (3) yields, for each [ ],m M M∈ −
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This equation depends on kr. However, letting kr tend to 
zero [10], or equivalently by matching only the n = |m| 
sectorial modes, the coefficients can be simplified and  
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(10) 
The weights for a discrete array of L loudspeakers are 
obtained by sampling the continuous weight function at L

regularly spaced angles 2
l

l Lφ π= , which is possible for 

L > 2M+1. The weights for L loudspeakers are then 
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(11) 
This describes a ‘decoder’ for deriving loudspeaker signals 
for a given sectorial HOA approximation to a sound field.  

3. COMPARISON WITH 2D REPRODUCTION AND 
PRESSURE MATCHING 

For comparison, we first consider the simple source solution 

for creating a 2D sound field ( ) ( ), , ,p R z p Rφ φ=  which 

is independent of z, using a regularly spaced array of L first 
order line sources. Following the same procedure as above 
yields the general cylindrical solution [8] 
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For a source at ( ),
s s

R φ , ( ) ( ) ( )exp
m m s s

A k H kR imφ= − . 

A second comparison may be obtained by minimizing the 
squared error between the desired sound pressure and the 
field produced by the loudspeaker array at a number of 

positions [ ], 1,
v

r v V∈ . The sum of squared errors can be 

written in matrix form as 
2

P p
w dε = −P , where P is a V

by L matrix of sound pressures produced at the V matching 
points by the L sources (Eq. 5), wp is an L by 1 vector of 
weights and d is an V by 1 vector of desired sound pressures 
at the matching points. Assuming that V  > L and including a 
constraint on the maximum weight power with parameter λ
produces the well known least squares error solution [5] 

1H H

p
w dλ

−
= +P P I P    (13) 

where H denotes the conjugate transpose and I is the L by L
identity matrix. In practice we used a grid of 576 points in 
the (x,y) plane obtained from a spiral function out to a radius  

( ) ( )max
1 2r L k= −    (14) 

which is the maximum radius at which reproduction is 
possible. In addition, each grid point had a z coordinate 
uniformly distributed over [–0.1rmax , 0.1rmax]. 

4. SIMULATION RESULTS 

We consider numerical simulations of a surround system 
consisting of L = 31 loudspeakers at a radius of 2.5 m. The 
desired field is that due to a single monopole source at a 
radius of 4 m and at an angle π/L, radiating a frequency of 
500 Hz. (For the 2D comparison we use a line source.) Fig. 
1 shows the field produced using the sectorial mode match 
solution, Eq. 11, assuming monopole loudspeakers (a = 1).  
The field is accurate out to rmax= 1.62 m (dotted circle). 
However a large exterior field is also generated, particularly 

in directions close to the source angle where the speaker 
amplitudes are largest.  
Fig. 2 shows the field using a = 0.25 hypercardioid speakers. 
The hypercardioid produces a small rearward lobe, and this 
produces a reduced and more phase coherent outward 
traveling wave. The exterior field amplitude is reduced, and 
there is no discernable effect on the interior reproduction 
accuracy.  

Figure 2: Sound field for L = 31 speakers at 2.5 m radius, 
a = 1.0 

Figure 3: Sound field for L = 31 speakers at 2.5 m radius, 
a = 0.25 

To assess the error in a compact form, we consider the 
normalized radial error in the (x,y) plane 
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and to assess the out-of plane behaviour we also consider the 
normalised error over a sphere  
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where Ω is solid angle. The circular and spherical radial 
errors for the sectorial mode and pressure matching 
solutions are shown in Fig. 4a, together with the error for the 
2D case. The mode solution error is smaller at small kr than 
the pressure matching solution. While the in-plane pressure 
matching performance is better at larger kr, the spherical 
errors are the same. The pressure matching error can be 
varied by altering the matching radius. For example, 
reducing the radius of the matching grid produces lower 
error at small kr but increases it at larger kr. Generally, the 
sectorial mode match approximation appears to be similar in 
performance to pressure matching. However, as expected the 
reproduction error of both approaches is higher than the 2D 
case [4]. In general the circular loudspeaker array is able to 
maintain lower errors in the (x,y) plane but the error is larger 
for non-zero z, since the loudspeaker array has no vertical 
beamforming capability. 

Fig. 4b shows the radial errors for the hypercardioid 
case. The modal solution error is unaffected at small kr and 
is reduced by around 1 dB at large kr. Thus the directional 
speakers produce no penalty in reproduction accuracy.  
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Figure 4: Radial errors: (a) a = 1, (b): a = 0.25 

5. CONCLUSIONS 

We have presented a derivation of the general decoder 
function for a circular array of loudspeakers with fixed first-
order directivities. For comparison, we have included the 2D 
solution for first-order directivity line sources and a pressure 
matching solution. The sectorial mode matching solution 
extends the monopole result in [10] and allows for a 
reduction of the reverberant field by reducing the radiation 
of sound outside the array. It is similar in performance to the 
pressure matching approach, although the pressure matching 

approach can provide trade-offs in the error at small and 
large kr. Generally we found that full mode matching at a 
single radius (Eq. 9) reduced reproduction error at that 
radius, but the error was similar or larger to the sectorial 
solution error at other radii.  

A circular array of loudspeakers cannot achieve the 
reproduction accuracy of an idealized 2D array of line 
sources or a 3D array of loudspeakers. However, it uses 
approximately 2/[kr] of the number required for the 3D case 
and allows a similarly reduced set of Ambisonics signals. 
The sectorial approximation is reasonably accurate for 
lateral sources and in this case the use of a circular array is 
more practical. A more detailed quantification of the 
sectorial approximation remains a future goal. 
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