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ABSTRACT

In this paper, we present a unified view of three non-stationary

sinusoidal parameter estimation methods which are based on

taking linear transforms of a signal and its derivatives. These

methods, the Distribution Derivative Method (DDM), the

Generalized Derivative Method (GDM), and the Generalized

Reassignment Method (GRM), are shown to be subcases of

a more general method which results in a system of linear

equations from which we can solve for the parameter estima-

tors. While the GDM and GRM are known to be theoretically

equivalent, we show that they are also equivalent to the DDM

in one special case. Matrix formulations are established for

the GDM and GRM with a polynomial log-amplitude, poly-

nomial phase sinusoidal signal model, and a bias in previous

frequency slope estimators is explicitly demonstrated.

Index Terms— Parameter estimation, non-stationary si-

nusoidal analysis, reassignment method, derivative method.

1. INTRODUCTION

The sinusoid plus noise model has been useful in many appli-

cations, including speech and music analysis and synthesis,

and digital audio effects. To model the sinusoidal part of

an observed signal we need to estimate the sinusoidal pa-

rameters: amplitude, phase, and frequency. Much work has

been done for the stationary case, where the parameters are

assumed to be constant within the analysis frame, but for

signals with strong amplitude or frequency modulations it

is necessary to use non-stationary sinusoidal analysis, where

the amplitude and frequency parameters are allowed to evolve

within the analysis frame. Those amplitude and frequency

modulations are modelled with extra sinusoidal parameters.

It has been convenient to model the amplitude variations

on a log scale, in which case the “non-stationary sinusoid”

is defined as an exponential function with a complex poly-

nomial function of time argument. Estimators have been de-

signed for a first-order amplitude and frequency modulation
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non-stationary sinusoidal model using reassignment opera-

tors [1, 2], signal derivatives [2, 3], Gaussian windows [4],

and phase-corrected vocoders [5].

More recently, methods have been proposed where the

modulations are generalized to any order of modulation and

can be represented not only by a polynomial, but any linear

combination of continuous real functions of time, for exam-

ple, sinusoidal modulations to represent tremolo and vibrato.

The first of these methods, the Distribution Derivative Method

(DDM), is formulated in terms of linear transforms on a dis-

tribution’s (the signal) derivative [6] and the second, the

Generalized Derivative Method (GDM)1, in terms of Fourier

transforms of windowed signal derivatives [7]. A third formu-

lation was proposed, the Generalized Reassignment Method

(GRM), which is equivalent to the GDM and moves the dif-

ferentiation from the signal to the analysis window. This can

be more convenient as signal derivatives are usually unknown

and have to be estimated using derivative filters [2].

The purpose of this paper is to unify these three methods

under one framework. This will show how these methods are

related, how we can use a mix of these three methods, and it

will further motivate practical comparisons of the three meth-

ods. The paper is laid out as follows. In Section 2, we develop

a unified view of the three methods and we show when they

are equivalent. In Section 3, we give the matrix formulation

for the general case, we develop examples with alternative

matrix formulations for the GDM and GRM, and we demon-

strate a bias in a previous frequency slope estimator.

2. PARAMETER ESTIMATION

2.1. The Signal Model

Our goal is to estimate the non-stationary sinusoidal param-

eters of s(t) from the observed signal š(t) = s(t) + ν(t),
where ν(t) is an additive noise. The signal model for s(t) is:

s(t) = exp

(
α0 +

K∑
k=1

αkpk(t)

)
, (1)

1Not to be confused with the GDM in [2], which precedes [7].
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where αk are the K + 1 complex non-stationary sinusoidal

parameters for the amplitude (real part) and phase (imaginary

part) modulations up to order K. We can use Eq. (1) for

a multi-component signal if we can reasonably separate the

contributions from each non-stationary sinusoidal component

using linear transforms such as the Fourier transform. The

types of modulation are represented by the K real functions

pk(t). A reasonable choice is pk(t) = tk as it can approx-

imate an arbitrary modulation with a Taylor expansion of

order K.

2.2. Some Mathematical Properties of Interest

We review some mathematical properties that will be of use

in designing our parameter estimators. With γ(t), an atom of

a linear transform, we denote the linear transform of a signal

x(t) by the inner product 〈x, γ〉:

〈x, γ〉 =

∫ +∞

−∞

x(t)γ∗(t) dt . (2)

Using integration-by-parts (IBP) on the inner product we

have:[
x(m)γ(n)

]+∞

−∞
= 〈x(m+1), γ(n)〉+ 〈x(m), γ(n+1)〉 , (3)

where the superscript (m) denotes differentiation m times.2

If γ(n)(t) or x(m)(t) go to zero at t = ±∞ we have zero on

the left-hand side of Eq. (3), and IBP simplifies to:

〈x(m+1), γ(n)〉 = −〈x(m), γ(n+1)〉 . (4)

2.3. Solving for Model Parameters

Taking the derivative of our signal model Eq. (1) we get a lin-

ear equation with respect to the model parameters αk, k > 0:

s′(t) =

K∑
k=1

αks(t)p
′
k(t) , (5)

and taking the mth derivative, m > 0, assuming pk(t) are

m-times differentiable, we get:

s(m)(t) =

K∑
k=1

αk(s(t)p
′
k(t))

(m−1) . (6)

While we could use time-domain linear equations to design

sinusoidal parameter estimators, it is often more useful to

transform the signal to another domain, such as the frequency

domain, to estimate the non-stationary sinusoidal parameters.

Using the atom γ(t), we apply a linear transform to both sides

of Eq. (6):

〈s(m), γ〉 =

K∑
k=1

αk〈(s · p
′
k)

(m−1), γ〉 . (7)

2We also use the convention: x′(t) = x(1)(t), x′′(t) = x(2)(t), ...

Since the derivatives of the observed signal are usually un-

known and have to be estimated, we can move the differen-

tiation from the signal to the atom by using IBP b times on

the left-hand side of Eq. (7), with b ≤ m, and d times on the

right-hand side, with d ≤ m − 1, assuming γ(t) is n-times

differentiable, where n = max(b, d), and its derivatives up to

order n− 1 go to zero at t = ±∞. We end up with:

(−1)b〈s(m−b), γ(b)〉 = (−1)d
K∑

k=1

αk〈(s ·p
′
k)

(m−d−1), γ(d)〉 .

(8)

To solve for the non-stationary parameters αk, k > 0, we

need K independent linear equations. Once we have solved

for the model parameters, the non-stationary parameter esti-

mators α̂k, k > 0, are given by replacing the signal model

s(t) by the observed signal š(t). Since the observed signal

will usually not exactly match the signal model, we can find

a linear least squares fit using L equations with L ≥ K. The

parameter α0, which represents the initial log-amplitude and

phase, can be estimated using the other estimations α̂k for

k > 0 [6].

2.4. A Unified View

To present a unified view of the three methods, we need to

look at the possible ways of generating L independent linear

equations from Eq. (8). To the ith equation, we associate one

atom: γi(t), one derivative order: mi, and one pair: (bi, di)
such that bi ≤ mi and di ≤ mi−1. The pair (bi, di) allows us

to allocate orders of differentiation to the signal or to the atom

via IBP. Choosing R unique atoms and M unique derivative

orders provides us with M + R − 1 equations, so we need

M + R − 1 = L. A specific method is then determined by

the M values of mi, bi, di, and the set of R atoms γi(t). We

call these choices the “configuration parameters”.

Now we will show which configuration parameters lead

to the DDM [6], the GDM [7], and the GRM [7]. These are

also summarized in Table 1.

Distributed Derivative Method (DDM): For the DDM, we

choose R = L (R different atoms) and M = 1, with mi = 1
and (bi, di) = (1, 0).

Generalized Derivative Method (GDM): For the GDM,

we choose R = 1 and M = L, with mi = 1, . . . , L and

(bi, di) = (0, 0), assuming the signal is L-times differen-

tiable. In [7] they used the atom: ψω(t) = h∗(t)ejωt, where

h(t) is a tapered analysis window, but any linear transform

atom could be used such that it goes to zero at t = ±∞.

Generalized Reassignment Method (GRM): For the GRM,

we choose R = 1 and M = L, with mi = 1, . . . , L and

(bi, di) = (mi,mi − 1). This allocates all the differentiation

to the atom. The atom we select must be L-times differen-

tiable, and must go to zero at t = ±∞ for all derivative orders

up to L − 1. A method of building sufficiently differentiable

atoms from ψω(t) is given in [7]. The authors of [8] recently

used a polynomial phase Fourier kernel with the GRM.
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Table 1 Examples of configuration parameters for generating L equations from Eq. (8)

# of atoms (R) # of derivative orders (M) mi (bi, di) Method used in literature

L 1 mi = 1 (1, 0) DDM [6]

1 L mi = 1, . . . , L (0, 0) GDM [7]

1 L mi = 1, . . . , L (mi,mi − 1) GRM [7, 8]

The configuration parameters which apply to the three

methods given are the extreme cases: the equations of the

DDM are given by using different atoms, the GDM uses

signal derivatives, and the GRM moves those derivatives

completely to the atom. Beyond these three configurations

exist many possibilities which could be tailored to the con-

straints on the differentiability of the atoms used and on the

availability of signal derivatives.

2.5. Theoretical Equivalence: Special Case

While the GRM and GDM are theoretically equivalent via

IBP, the DDM is only equivalent to the GRM and GDM in

one special case. If we choose increasing orders of deriva-

tives of one atom for the L atoms of the DDM such that

γi(t) = γ(i)(t), then the DDM is equivalent to the GRM, and

thus the GDM.

3. MATRIX FORMULATION

3.1. General Case

To solve our system of equations we can write it in matrix

form and use typical matrix decompositions. We want to

solve for the vector α, which contains the non-stationary

sinusoidal parameters for k > 0, from the matrix equation:

Asα = bs, where the elements of the matrices are:

As{i,k} = (−1)di〈(s · p′k)
(mi−di−1), γ

(di)
i 〉 (9)

α{i,1} = αi (10)

bs{i,1} = (−1)bi〈s(mi−bi), γ
(bi)
i 〉 . (11)

As is L ×K, α is K × 1, and bs is L × 1. We solve for α

by taking the pseudoinverse of As:

α = (AH
s As)

−1
A

H
s bs . (12)

Replacing s(t) with the observed signal š(t) we get the esti-

mation of the parameter vector α:

α̂ = (AH
š Aš)

−1
A

H
š bš . (13)

3.2. Example 1: GDM

If we choose the configuration parameters for the GDM with

the atom ψω(t) and pk(t) = tk, we can get an alternative

matrix formulation by expanding the differentiation on the

product (s · p′k) using the generalized product rule of differ-

entiation, which results in a binomial expansion of the deriva-

tives. We can represent this system of equations by the matrix

equation Us a = bs, where Us is L×LK, a is LK × 1, and

bs is given by Eq. (11). We use the partition indices (i,k),
representing vector partitions of Us and as, to get:

Us{i,k} =

⎧⎨
⎩
(
i− 1

i− k

)
Cs(i,k) i ≥ k

0{1×K} otherwise

(14)

a{i,1} = α , (15)

and Cs(i,k) is a 1×K row vector with elements:

Cs{1,k}(i,k) =

⎧⎪⎪⎨
⎪⎪⎩

k!

(k − i+ k− 1)!
·

Fω

{
s(k−1)T k−i+k−1h

} k ≥ i− k+ 1

0 otherwise ,

(16)

where Fω{x} denotes the Fourier transform (FT) of x(t)
evaluated at the frequency ω, and where (T x)(t) = tx(t).
We see that with the atom we have selected, the GDM results

in a system of equations built on FTs of signal derivatives

combined with time-ramped windows. Using a shorthand

notation such that S
(m)

ω;T h(n) = Fω

{
s(m)T h(n)

}
, we give as

an example the matrices for K = L = 2:[
Sω;h 2Sω;T h 0 0

0 2Sω;h S′
ω;h 2S′

ω;T h

][ [
α1 α2

]T[
α1 α2

]T
]
=

[
S′
ω;h

S′′
ω;h

]
.

(17)

From these matrices we can solve for the parameters α1, α2:

α2 =
S′′
ω;hSω;h − (S′

ω;h)
2

2
(
(Sω;h)2 + S′

ω;T hSω;h − Sω;T hS′
ω;h

) (18)

α1 =
S′
ω;h

Sω;h
− 2α2

Sω;T h

Sω;h
. (19)

By replacing s(t) with the observed signal š(t) these expres-

sions become the parameter estimators α̂1, α̂2.

3.3. Example 2: GRM

If instead we want to use the GRM with the atom ψω(t) and

pk(t) = tk, we still solve for Us a = bs, but we can expand
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the differentiation on the atom so Cs(i,k) and bs become:

Cs{1,k}(i,k) = (−jω)i−kkFω

{
sT k−1h(k−1)

}
(20)

bs{i,1} = −

i∑
q=0

(
i

q

)
(−jω)i−qFω

{
sh(q)

}
. (21)

The pyramid-like scheme in [7, 9] comes from the binomial

expansion of the atom derivatives in bs. For K = L = 2 we

get the following matrices:

[
Sω;h 2Sω;T h 0 0

−jωSω;h −2jωSω;T h Sω;h′ 2Sω;T h′

][ [
α1 α2

]T[
α1 α2

]T
]

=

[
jωSω;h − Sω;h′

ω2Sω;h + 2jωSω;h′ − Sω;h′′

]
, (22)

from which we can solve for α1 and α2:

α2 =
Sω;h′′Sω;h − (Sω;h′)2

2 (Sω;T hSω;h′ − Sω;T h′Sω;h)
(23)

α1 = jω −
Sω;h′

Sω;h
− 2α2

Sω;T h

Sω;h
. (24)

We note that the frequency slope estimators used in the

past [1, 2, 3, 9] are different from the unbiased estimators

given by taking the imaginary part of Eq. (18) or (23). Un-

like these estimators, which come directly from the signal

model, the reassignment method frequency slope estima-

tor in [1] comes directly from the reassignment operators.

That estimator, which appears on the left-hand side of the

following inequality, is slightly biased because in general

�{z1}/�{z2} 	= �{z1/z2}, where:

z1 =
Sω;h′′Sω;h − (Sω;h′)2

(Sω;h)2
(25)

z2 = 2

(
Sω;T hSω;h′ − Sω;T h′Sω;h

(Sω;h)2

)
. (26)

The same goes for the frequency slope estimator in [3]; it is a

slightly biased version of Eq. (18).

Similar matrix formulations for the DDM are found in [6].

4. CONCLUSIONS

We have presented a unified framework from which we can

get the DDM, GDM, and GRM non-stationary sinusoidal

parameter estimators. This shows that the three methods are

just different configurations of a more general method, and in

one case the three methods are equivalent. Matrix formula-

tions of the GDM and GRM were developed for polynomial

log-amplitude and phase modulations, and we showed there

was a bias in previous frequency slope parameter estimators

using reassignment operators and signal derivatives. This

work further motivates the practical comparisons of the three

methods, and motivates studies on the use of hybrid methods

that combine different atoms with derivatives of the signal

and derivatives of the atoms. Experiments comparing these

three methods with the Cramér-Rao bounds (also comparing

with [4]) have been presented in [10].
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