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ABSTRACT

Our study deals with a Silent Speech Interface based on map-
ping surface electromyographic (EMG) signals to speech
waveforms. Electromyographic signals recorded from the
facial muscles capture the activity of the human articulatory
apparatus and therefore allow to retrace speech, even when no
audible signal is produced. The mapping of EMG signals to
speech is done via a Gaussian mixture model (GMM)-based
conversion technique.

In this paper, we follow the lead of EMG-based speech-
to-text systems and apply two major recent technologi-
cal advances to our system, namely, we consider session-
independent systems, which are robust against electrode
repositioning, and we show that mapping the EMG signal
to whispered speech creates a better speech signal than a
mapping to normally spoken speech. We objectively evaluate
the performance of our systems using a spectral distortion
measure.

Index Terms— Silent Speech, Electromyography,Speech
Synthesis, Voice Conversion

1. INTRODUCTION

In the past decades, the robustness and performance of
computer-based speech processing systems have improved
substantially. However, speech-driven technologies today
still face some major challenges, in particular: 1) the per-
formance degrades in the presence of noise, 2) the clearly
audible speech disturbs bystanders and compromises pri-
vacy, 3) speech-disabled persons may not be able to use
these technologies. Several methods to alleviate these prob-
lems have been proposed, all with the purpose of creating a
Silent Speech Interface[1], which is a system enabling speech
communication when an acoustic signal is unavailable. Our
method of processing silent speech relies on surface elec-
tromyography (EMG) [2], where the activation potentials of
the human articulatory muscles are recorded with surface
electrodes in order to retrace speech. Fig. 1 shows the typical
setup of our EMG-based silent speech interface.

To implement a silent speech interface, input EMG sig-
nals have to be converted to text information [3] or to synthe-

Fig. 1. Electrode positioning, black numbers indicate unipo-
lar derivation with reference electrodes on mastoid portion of
the temporal bone (except channel 1), white numbers indicate
bipolar derivation.

sized speech waveforms [4] so that a receiver, be it a com-
puter or another human, can comprehend the intended mes-
sage. In EMG-to-text conversion (also called EMG-based
speech recognition), the main fields of investigation are cur-
rently the creation of session-independent systems, which are
robust towards electrode repositionings, and the EMG-based
investigation of speaking mode discrepancies between audi-
ble and silent speech [5]. In this paper, we follow a different
approach and perform a direct conversion of EMG signals to
speech waveforms [4]. The purpose of this paper is to apply
the technological advances from EMG-to-text conversion to
the direct EMG-to-speech mapping, to point out similarities,
and to outline differences.

From an application standpoint, the EMG-to-speech ap-
proach is preferrable to the EMG-to-text method whenever
human-to-human communication is intended, in particular,
there are no vocabulary restrictions, and direct mapping of
EMG signals to speech allows for the inclusion of prosody
or emotional speech content, whereas in EMG-based speech
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recognition, only the pure textual content is preserved. Note
that methods for the inclusion of prosodic information have
been proposed in a previous paper [6] and are not dealt with
here.

The paper is organized as follows. The GMM-based map-
ping method is briefly described in Section 2. Section 3 de-
scribes our experiments and results, and section Section 4
concludes the paper.

2. GMM-BASED MAPPING FROM EMG TO SPEECH

Voice Conversion (VC) is a feature modification technique
that causes input speech (referred to as source speech) to
sound as if it is uttered by another person (referred to as
target speech). A classical VC method [7, 8] is based on
Gaussian Mixture Models (GMMs). In this paper we mod-
ify this method to map EMG signals to speech signals, the
algorithm is outlined in this section.

The GMM mapping method consists of the training and
conversion parts. For training, one needs a corpus of utter-
ances where the EMG signal and the acoustic signal have
been synchronously recorded. The data for the GMM training
consists of 32-dimensional EMG feature vectors as the source
data and 25-dimensional vectors in form of Mel Cepstral Co-
efficients as the target data. Note that the 0-th Mel coefficient
was not used in training and testing, since it represents the
power of the acoustic signal, which is hard to estimate with
EMG.

The used conversion is based on our previous work [6]:
We define a static source and target feature vector at frame t as
xt = [xt(1), · · · , xt(dx)]

� and yt = [yt(1), · · · , yt(dy)]�,
respectively. dx and dy denote the dimension of xt and yt,
respectively. After preparing the training data, a GMM is
trained to describe the joint probability density of the source
and the target feature vectors as follows:
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where N (·;μ,Σ) denotes the Gaussian distribution with a
mean vector μ and a covariance matrix Σ. m denotes the
mixture component index, and M denotes the total number
of the mixture components. The parameter set of the GMM
is denoted by λ, which consists of weights wm, mean vec-
tors μ(X,Y )

m and full covariance matrices Σ(X,Y )
m for individ-

ual mixture components. μ(X)
m and μ

(Y )
m represent the mean

vectors of the mth mixture component for the source and the
target features, respectively. Σ

(XX)
m and Σ

(Y Y )
m represent

the covariance matrices and Σ
(XY )
m and Σ

(YX)
m represent the

cross-covariance matrices of the mth mixture component for
the source and the target features, respectively.

The conversion method we are using is adapted from [7,
8] and is based on a minimum mean-square error criterion:

ŷt =

M∑
m=1

P (m|xt, λ)E
(Y )
m,t,

P (m|xt, λ) =
wmN

(
xt;μ

(X)
m ,Σ(XX)

m

)
∑M

n=1 wnN
(
xt;μ

(X)
n ,Σ(XX)

n

) ,
E

(Y )
m,t = μ(Y )

m +Σ
(Y X)
m Σ

(XX)−1

m

(
xt − μ(X)

m

)
,

where ŷt is the estimated target feature vector at frame t.
Thus ŷ�

t is the finally estimated Mel Cepstral feature vector.

3. EXPERIMENTAL EVALUATION

3.1. Experimental Conditions

For EMG recording, we used a computer-controlled 6-
channel EMG data acquisition system (Varioport, Becker-
Meditec, Germany). We adopted the electrode positioning
which yielded optimal results from [3].

We used six channels and captured signals from 1) the le-
vator angulis oris, 2) the zygomaticus major, 3) the platysma,
4) the anterior belly of the digastric and 5) the tongue, see
Figure 1 for the electrode positioning. All EMG signals were
sampled at 600 Hz and filtered with an analog high-pass filter.

For this study we use a subset of the EMG-UKA corpus
[9], namely a subset of five different male speakers. In a quiet
room each of the speakers read the same 50 sentences from
the Broadcast News domain in two different speaking modes:
audible (normally spoken) and in whispered speech. 45 sen-
tences were used for GMM training, and the remaining 5 sen-
tences were used for testing. Note that the test sentences were
not included in the training.

In the audible and whispered part, we parallely recorded
the acoustic signal with a standard close-talking microphone
connected to a USB soundcard. The audio signal is synchro-
nized to the EMG signal with an analog marker. We also ap-
plied a 50 ms delay between audio and EMG signal, since the
muscle activity precedes the acoustic sound and this number
gave best results in EMG-based speech recognition experi-
ments [3].

3.2. Preprocessing

The feature extraction for source EMG signals is based on
time-domain features [3]. For any given feature f , f̄ is its
frame-based time-domain mean. Pf is the corresponding
frame-based power, and zf is the frame-based zero-crossing
rate. S(f , n) is the stacking of adjacent frames of the feature
f in the size of 2n + 1 (−n to n) frames. Note that classi-
cal Voice Conversion typically uses first oder second order
delta coefficients. We expect that the construction of adjacent
feature vectors captures more complex information.
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For an EMG signal with normalized mean x[n], the nine-
point double-averaged signal w[n] is defined as

w[n] =
1

9

4∑
k=−4

v[n+k], where v[n] =
1

9

4∑
k=−4

x[n+k].

The high-frequency signal is p[n] = x[n] − w[n], and the
rectified high-frequency signal is r[n] = |p[n]|. The final
feature TD15 is defined as follows:

TD15 = S(f2, 15),where f2 = [w̄,Pw,Pr, zp, r̄].

Frame size and frame shift were set to 27 ms respective 10 ms.
In all cases, we apply Linear Discriminant Analysis (LDA) on
the TD15 feature to reduce it to a final feature vector with 32
coefficients.

3.3. Experimental Results

For evaluation of our different setups we use Mel Cepstral
Distortions (MCD). The MCD is a scaled Euclidian distance
between the spectral features of the target audible/whispered
speech and the spectral features of the synthesized EMG
speech in decibel, given by the following equation:

MCD = 10/ ln 10

√√√√2 ·
24∑
k=1

(mct[k]−mcs[k])2

mct[k] and mcs[k] denote the k-th mel cepstral coefficient of
target and synthesized data. Smaller numbers implicate better
results. Since we use only the MCD metric of Mel coefficients
1 - 24 for evaluation, we do not evaluate prosody.

3.3.1. Gaussian mixtures

In a first experiment we obtain the optimal number of Gaus-
sian mixture components. Since we want to optimize this
number towards a large session-independent system, we use
the two speakers from the EMG-UKA corpus with a prefer-
ably high amount of recorded data. Both speakers addition-
ally recorded 520 unique audible sentences. Note that we also
did a prosodic analysis of the fundamental frequency with the
same data in our previous work[6]. We vary the number of
mixture components between 4 and 512 and train the GMM-
based conversion with 500 sentences using the remaining 20
sentences for testing. Figure 2 shows the MCD of those mix-
ture components.

Speaker 2 gets best results with 256 Gaussian mixture
components, whilst Speaker 1 shows a minimal MCD with
128 mixtures – with only little difference to 256 mixture com-
ponents.

Fig. 2. Mel Cepstral Coefficients with different numbers of
Gaussian mixtures

3.3.2. Synthesis of audible vs whispered speech from EMG

Based on our analysis of different speaking modes in [5] we
transformed EMG-derived features from several speakers to
audible and whispered speech. Since whispered speech nearly
has no fundamental frequency and since we focus in this study
on spectral features only, this gives us an interesting com-
parison on EMG to whispered vs audible speech conversion.
Another motivation for having a closer look at the whispered
speech synthesis is that whispered speech can be regarded as
an in-between of audible and silent speech.

For this evaluation we want to compare several speak-
ers and therefore use data from all five subjects of our sub-
set EMG-UKA corpus. For each speaking mode we use 45
sentences for training and 5 sentences for testing our GMM-
based voice conversion. Additionally we train the GMMs
with combined data of 90 whispered and audible data, us-
ing the remaining 10 sentences for testing. Due to the lower
amount of training data we set the number of Gaussian mix-
tures to 32. The MCDs with standard deviations are listed
in Table 1. The best result on this data set shows speaker 2

Table 1. Mel Cepstral Coefficients (with standard deviations)
of EMG-to-Speech conversion from five different speakers

Spk EMG-to-AUD to-WHIS to-AUD/WHIS
1 6.164 (0.29) 5.920 (0.25) 6.204 (0.20)
2 4.999 (0.29) 4.528 (0.20) 5.220 (0.48)
3 5.927 (0.34) 5.519 (0.10) 6.094 (0.43)
4 7.357 (0.53) 6.021 (0.28) 7.265 (0.99)
5 6.537 (0.49) 5.630 (0.17) 6.542 (0.80)

with an MCD of 4.53 dB on whispered speech. In general
EMG-to-Whisper gives better results compared to the EMG-
to-Audio conversion. It’s also noticable that there are large
MCD variations between the speakers. The difference be-
tween the best and worst speaker in EMG-to-AUD is 2.36
and it is unclear what are the reasons for this discrepancy.
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Therefore a closer look at e.g. articulatory features would be
possible, instead of evaluating the whole sentence.
Surprisingly the results on audible speech in general are better
compared to the prior experiment with 500 sentences. Apart
from speaker 4 the MCDs of the combined speaking modes
give worse results compared to the separate speaking modes.

3.3.3. Session independent evaluation

As a last experimentwe investigate how a session-independent
system will perform on our data. The term session indicates
that during the recording of this session, the EMG electrodes
were not reattached or removed. Since the training and test
data for one speaker was only used from one single session,
we only obtained session-dependent systems in the previous
experiments. We now use the speaker from the EMG-UKA
corpus with the highest number of recordings and train our
GMM-based Voice Conversion with all that data. In total we
use 16 sessions of speaker 1 resulting in a training set of 1480
sentences and a testing set of 370 sentences. The results with
different numbers of Gaussian mixtures can be seen in Table
2.

Table 2. Mel Cepstral Coefficients (and standard deviations)
of Session independent EMG-to-Speech conversion with dif-
ferent numbers of Gaussian mixtures.

# of mixtures MCD (SD)
512 6.036 (0.99)
256 6.046 (1.01)
128 6.082 (1.02)
64 6.188 (1.01)
32 6.207 (1.03)

It is noticable that the MCD of around 6.1 is only
slighty worse compared to the 500 sentence training session-
dependent result from the same speaker, which gave an
MCD of around 6. Thus we can state that the GMM-based
voice conversion approach performs robust even with minor
changes in the electrode placement or other influences.

[10] introduced a similar synthesis approach using NAM-
to-speech conversion. They achieved an MCD of 5.99, im-
proving this number to 5.77 using visual information. Com-
pared to those numbers, we can see that with using only elec-
tromyographic data we can achieve reasonable performance
in speech synthesis.

4. CONCLUSION

In order to convert surface electromyographic signals cap-
tured from a subject’s face to audible speech, we successfully
used a Gaussian Mixtured Model based Voice Conversion ap-
proach. The results of our experimental evaluation indicated

that the optimal number of Gaussian mixtures depends on the
amount of training data. We also achieved better results, in
terms of a Mel Cepstral Distance (MCD) metric, with whis-
pered speech compared to normal audible speech. A session-
independent evaluation was introduced, which used recording
sessions, between which the EMG electrodes were removed
and reattached. The results on this data showed quite rea-
sonable performance compared to similar session dependent
conversions.
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