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ABSTRACT

Motif discovery algorithms are used in bioinformatics to find rele-
vant patterns in genetic sequences. In this paper, the application of
such methods to audio analysis is proposed. In the presented sys-
tem, sounds are first transformed into a sequence of discrete states,
corresponding to characteristic spectral shapes. The resulting se-
quences are then subjected to the MEME algorithm for motif dis-
covery, which estimates a structured statistical model for each found
motif. The system is evaluated in two tasks: the discovery of repet-
itive patterns in a large sound database, and the detection of specific
audio events in an audio stream. Both tasks are unsupervised and
demonstrate the viability of the approach.

Index Terms— Sequence motif, audio event detection, audio
similarity, bioinformatics

1. INTRODUCTION

In bioinformatics, motif discovery is a set of techniques aimed at
finding relevant patterns in genetic sequences [1]. Often, such se-
quence motifs guide important biochemical processes or largely de-
termine protein structures. A genetic sequence is typically repre-
sented as a long string of letters out of an alphabet of 4 letters (for
DNA sequences) or of 20 letters (for amino acid sequences). Motif
discovery algorithms perform a statistical analysis of such strings,
together with multiple comparisons between string segments, to de-
rive a set of candidate motifs. A found motif is usually represented
by a Position Weight Matrix (PWM) which contains the likelihood
of appearance of each letter at each position in the motif.

In the present contribution, the application of genetic motif dis-
covery to the analysis of sounds is proposed. Given a relevant repre-
sentation of sound as a sequence of discrete states denoted by letters,
the use of motif finding tools is attractive for a number of reasons.
First, motif discovery algorithms account for the relative variability
between instances of candidate motifs. Indeed, exact matches are
rare in genetic sequences, and the same can be said about instances
of realistic acoustic events. Also, some powerful algorithms are able
to find motifs with few parameters, automatically determining pa-
rameters such as motif length, total number of motifs, and number
of motif sites per sequence (in this context, a site is the position in a
sequence where an instance of the motif starts). A further important
advantage is that motif discovery algorithms are highly optimized,
well established, and able to handle very large sequence databases,
which are typical in bioinformatics.

Motif finding, while related, should not be confused with se-
quence alignment. The goal of the latter is to find the position of

This work is supported by the OSEO-funded EUREKA Eurostars project
RAABSPM (AudioHelix), E!5189.

similar regions between two or more sequences, while motif finding
derives an explicit statistical model describing the high-similarity re-
gions, and can find interesting structures from scratch, without any
initial sequence reference or query. Genetic sequence alignment has
often been applied to audio (see, e.g. [2]). This is not the case for
motif discovery, whose application to audio is novel.

This article presents an audio analysis system that first converts
a database of sounds into a database of letter sequences, each let-
ter representing a prototypical spectral shape, and then makes use
of a genetic motif discovery algorithm to find short, repetitive sound
events that are prominent in the database. A motif thus represents
a characteristic temporal sequence of spectral shapes that is persis-
tent among many different sound files. The system is then evalu-
ated within two different contexts of use. It is first used as a tool
for sound motif discovery in a large and heterogeneous sound effect
database in a fully unsupervised way. This can be useful in an ef-
ficient database browsing scenario or for musicological or creative
purposes. Secondly, the system is used for an audio event detection
task, where the goal is to detect a set of specific short audio events
within an audio stream. Previous methods aimed at such a task in-
clude fingerprinting [3] and Matching-Pursuit-derived features com-
bined with Locality-Sensitive Hashing [4]. Further potential appli-
cations of this second scenario are click detection in old recordings
and musical onset detection.

The motif finding method chosen for the proposed system is
MEME (Multiple Expectation-Maximization for Motif Elicitation)
[5, 6]. Apart from being one of the best established motif finding
tools, the statistical model on which MEME is based was deemed ad-
equate to detect sound events. Indeed, MEME uses a two-component
mixture model, one for the motifs and one for the background, which
in genetics corresponds to non-informative subsequences, and in
sound to uninteresting segments between salient events.

Fig. 1 shows an overview of the audio motif discovery system.
It is divided into two main parts. The sequencing part converts a
sound database into a set of letter sequences. The motif finding part
analyzes that set of sequences and outputs a database of sequence
motifs with their corresponding audio segments.

2. SEQUENCING

The goal of the sequencing subsystem is to convert a set of sounds
into a set of letter strings, each string corresponding to one sound
file. In genetics, the consecutive nucleotides (in DNA sequences) or
amino acids (in protein sequences) are represented by letters, and the
position in the sequence denotes the position in the DNA molecule.
In the audio counterpart proposed here, the letters represent distinct
spectral shapes, and the position in the string corresponds to time.
Thus, a motif is a characteristic temporal evolution of spectral shape
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Fig. 1. Audio motif finding: system overview.

during a short interval. From this standpoint, motif finding can be
considered a temporal modeling technique. Here, a dictionary is
a small database containing representative spectral shapes, together
with the mapping between them and the chosen letters. It should be
noted that in contrast to bioinformatics, where letters are standard-
ized and correspond to specific nucleotides or amino acids, here the
assignment of letters to spectral shapes is arbitrary.

2.1. Dictionary learning

The dictionary is learned by performing a frame-wise feature extrac-
tion on the whole sound database and subsequently performing vec-
tor quantization on the features. The first 12 Mel Frequency Cepstral
Coefficients (MFCC), without the first (energy) coefficient, were
used as features. K-Means clustering was performed on the feature
vectors. The centroids of the clusters are chosen as the dictionary
elements. Thus, the number of clusters K is also the number of dic-
tionary elements and of the letter alphabet A = {a1, a2, . . . , aK}.

If the sound database is large, a downsampling of the feature
vectors is needed prior to clustering to avoid computational over-
load. Thus, once the dictionary elements have been obtained, the
original feature vectors have to be projected onto the dictionary vec-
tors to obtain a similarity matrix between each feature vector and
each dictionary element. To this aim, cosine similarity was used.
In future versions of the system, it is planned to use more efficient
clustering methods, such as mini-batch k-Means.

2.2. Sequence generation

Given the feature-to-dictionary similarity matrix, the letter corre-
sponding to the closest dictionary element for each feature vector
is chosen, obtaining a long string. The strings are exported into text
files following the FASTA format convention, which is standard in
bioinformatic software. Each file sequence is preceded by a header
that can contain metadata describing the sounds.

3. MOTIF FINDING

3.1. Low Complexity Filtering

Prior to the actual motif finding, some preprocessing steps are
needed. First, the ensemble of sequences are subjected to Low Com-
plexity Filtering (LCF). This removes non-informative sections of

the sequences, consisting mostly of long repetitions of the same let-
ter, with few occasional changes to other letters. In an audio context,
with MFCCs as features, long strings of the same letter correspond
to a static spectral envelope, which is structurally uninteresting. Fail-
ing to remove those sections can mislead the motif finding algorithm
to find one-letter motifs, since they are in fact repetitive, prevalent
patterns. LCF is also crucial in bioinformatic motif finding [5]. A
popular LCF algorithm from that area was used, called SEG [7].

3.2. The MEME algorithm

The basic assumption of the MEME algorithm1 is that every subse-
quence of length W in the database X is generated from a statistical
mixture model defined as the weighted sum of a motif model and a
background (non-motif) model. Each substring is assumed to have
been generated from either one of the models. The distribution for a
given substring xi ∈ X of length W can thus be expressed as

p(xi|θ) = λp(xi|θM ) + (1− λ)p(xi|θB), (1)

where θM is the parameter vector of the motif model, θB is the
parameter vector of the background model, λ is the probability that
the substring was generated by the motif model, and θ is the global
parameter vector θ = {λ,θM ,θB}.

The motif model is described by a set of multinomial distribu-
tions, one for each position in the motif. In other words, each posi-
tion j in the motif, for j = 1, . . . ,W is described by a multinomial
distribution of parameters θMj = {fj1, fj2, . . . , fjK}, where fjk
is the probability of letter k at position j. The multinomial distribu-
tions are assumed independent, giving a motif probability

p(xi|θM ) =
W∏
j=1

K∏
k=1

f
I(k,xij)

jk , (2)

where I(k, xij) is the indicator function

I(k, xij) =

{
1 if xij = ak

0 otherwise
(3)

The background model is also a multinomial distribution, with
the difference that its parameters do not depend on the po-
sition. Thus, it is described by a single parameter vector

1Strictly speaking, MEME is the software implementing a motif finding
algorithm called MM. Since MEME is the better-known acronym in bioin-
formatics, it will be used here to denote both algorithm and implementation.
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(a) Sequence logo.

(b) Sequence motif sites.

(c) Spectrograms of audio motif sites (selection).

Fig. 2. Example of found motif in a large sound effects database,
with a selection of corresponding sequence sites.

θB = {f01, f02, . . . , f0K}. Its probability is

p(xi|θB) =
W∏
j=1

K∏
k=1

f
I(k,xij)

0k . (4)

Given the MEME model, motif finding is formulated as a Max-
imum Likelihood (ML) optimization problem via an Expectation-
Maximization (EM) algorithm. To that aim, a set of latent vari-
ables Z has to be defined in order to optimize the joint likelihood
p(X,Z|θ). The latent variables are defined [6] as the set of bi-
nary indicators zim of the starting positions of the candidate motifs
(zim = 1 if a motif instance starts at position m in the length-Mi

subsequence xi and 0 otherwise). Thus, the ML problem is defined
as the maximization of the log-likelihood

L(θ|X,Z) =

N∑
i=1

Mi∑
m=1

{zim log(p(xim|θM )λ)

+ (1− zim) log(p(xim|θB)(1− λ))}, (5)

where N is the total number of subsequences in the database. See
[6] for a detailed derivation from Eq.5 of the E and M steps.

Apart from the actual EM optimization, the MEME algorithm
includes a number of heuristics to find good initialization values for
the parameters, good motif starting positions, to automatically select
the motif length W , which can be different among motifs, and to
determine the number of motif instances per motif [6].

3.3. Background model estimation

As part of the overall parameter vector, the background model pa-
rameter θB is optimized during EM. By default, it is initialized by
measuring the letter frequencies in the input sequence database. In
addition to the letter frequencies, MEME offers the possibility to
use first-order letter transition probabilities (i.e., an Markov chain)
for such initialization. These can be either estimated on the input
sequence database, or estimated externally and passed as a vector.

The latter option is used here in order to cope with the following
problem. The computational cost of MEME is high if the number of
letters in a sequence exceeds a certain limit. Thus, the single FASTA
file containing the whole database after LCF is cut into chunks, al-
lowing running one instance of MEME per chunk. This makes com-
putation tractable, but on the other hand it prevents MEME from
observing the whole database when searching for motifs. Thus, to
provide MEME with some prior information about the database as a
whole, a Markov chain is estimated from the full database and passed
to every instance of MEME, as indicated in the lower part of Fig. 1.

3.4. Sequence logos

For each found motif, MEME outputs the estimated model parame-
ters θM in the form of a PWM containing letter-position probabil-
ities, together with a list of motif sites and a statistical significance
value for each site (the p-value). A sequence logo is a graphical rep-
resentation of a PWM. The columns of a sequence logo correspond
to the position in the motif, and the height of the individual letter in
each column is proportional to its probability of appearance at that
position. In addition, the total height of each column denotes the
information content Rj in bits at that position, given by

Rj = log2 K +
K∑

k=1

(fjk log2 fjk). (6)

An example of sequence logo is shown on Fig. 2(a). The colors used
by MEME for display purposes are based on shared biochemical
properties between the amino acids associated to the letters. In the
audio application presented here, the colors are arbitrary and have
no other purpose than to clarify letter transitions.

As the last step of the system, the motif site indices and lengths
are mapped to the stored audio indices, and a set of sound files is
generated by cutting the original sounds at the appropriate intervals.

4. APPLICATION TO AUDIO MOTIF DISCOVERY

The system was first used for the unsupervised search of motifs in a
large sound database. The used database was the Sound Ideas Series
6000 General Sound Effects Library2, comprising 3273 sound ef-
fects. For feature extraction, a Blackman analysis window of 40 ms
with a hop size of 20 ms was used, and 12 MFCCs per frame were
extracted. The alphabet was of size K = 20, which is the largest
size allowed by MEME, corresponding to the 20 different amino
acid symbols. The performance will likely benefit from larger al-
phabet sizes, allowing a more adequate representation of complex
sounds. As part of future work, MEME will be modified to that aim.

2http://www.sound-ideas.com
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Fig. 3. Audio event detection results.

A collection of motifs and sound segments corresponding to
motif sites was obtained. In many cases, the system detected very
similar occurrences of a repetitive pattern inside the same sound ef-
fect file, or among very similar files. More interesting results from
the point of view of search-by-similarity are, however, when sites
of a given motif occur in sounds of very different classes. Fig. 2
shows an example of such a result, where a similar pattern, in terms
of both rhythmical structure and timbre, was found in sound files
such as a cowbell rhythm (marked as Music17 in the figure), a bird
noise (marked as Animals8) and a sword fight (marked as Miscel-
laneous10). Fig. 2(a) shows the logo for this motif, and Fig. 2(b)
shows a selection of motif sites, sorted by p-value (the lower p-value,
the more statistically significant the site is). Fig. 2(c) shows the
spectrograms corresponding to three of the found sites. The sound
segments corresponding to this and other examples can be listened
to in a companion website3.

5. APPLICATION TO AUDIO EVENT DETECTION

As a second application, the system was used to detect similar, repet-
itive events in an audio file [3, 4], in an unsupervised way. To that
end, an artificial 15 second sound scene was created, consisting of a
background (ambiance sound in a park) mixed with occasional dog
barks (8 in total) and 15 hammer strikes. The goal was twofold: to
find the onsets of the bark and hammer events, and to cluster them
into two classes. The events were manually annotated, and the ex-
periment was repeated with different levels of the background am-
biance to test the robustness of the system against mixed sounds. In
this experimental setup, the “sound database” consists of only the in-
put mixture sound. A 10 ms window length and 5 ms hop size were
used. LCF was bypassed, as it was removing most of the letters with
such a small database. The alphabet size was K = 8. In this task,
the system is computationally efficient, and a full run takes roughly
1.3 times real-time on a 2.4 GHz Quad CPU with 8 GB RAM.

The performance was measured in terms of class-wise precision
(P ), recall (R) and F -measure of the detected onset positions com-
pared to the annotated onsets within an error window of 40 ms. To
compensate the randomness introduced by the algorithm initializa-
tions (notably k-Means), for each background level the experiments
were repeated 10 times and the measures averaged. Fig. 3 shows the
P , R and F values averaged among the two classes and among all
experiment runs, as a function of the peak-to-peak amplitude ratio
(in dB) between the events signal (barks plus hammer strikes) and

3http://audionamix.com/AudioHelixMotifFinding1/

the background signal. It can be seen that for high background lev-
els (ratios from 0 to 20 dBs), precision and recall are balanced but
always below 70%. For low background levels (higher dB ratios),
recall always outweighs precision, indicating a high number of false
positives. The rightmost point in the graph corresponds to an infinite
level ratio (no background sound). The system is able to well detect
and cluster the events down to a level ratio of 25 dB (the obtained
measures for 25 dB are P = 78.01%, R = 78.67%, F = 78.07%).
For lower ratios, the background interferences are too high and dis-
turb the motif finding process.

6. CONCLUSIONS

Genetic motif discovery can be applied to audio analysis for a com-
putationally efficient and unsupervised detection of repetitive sound
events with temporal and spectral similarity. In the proposed frame-
work, a motif can be considered a detailed statistical model of the
temporal evolution of the spectral envelope. This is a novel applica-
tion of genetic motif finding, and its usefulness has been demon-
strated in two tasks: discovery of characteristic events in a large
sound database from scratch, and onset detection of recurrent, salient
audio events in a stream.

Once the validity of the approach has been proved, further, ex-
tensive optimizations are needed by collecting and annotating larger
audio event databases, and by benchmarking results with alternative
methods. Also, further research will be aimed at improving the ro-
bustness of the system against high background noise levels. To that
aim, the sequence generation and statistical model will be adapted
to better represent sound mixtures: the interleaved model used by
MEME (alternating segments of motifs and background) could be
reformulated as an additive model of different symbolic levels, cor-
responding to the mixed sounds.
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