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ABSTRACT

In this paper, a new method for pitch tracking is presented. The
method is comprised of two steps. In the first step, accurate pitch
estimates are obtained on a sample-by-sample basis by updates of
the signal statistics with an exponential forgetting factor and subse-
quent numerical optimization. In the second step, a Kalman filter
is used to smooth the estimates and separate the pitch into a slowly
varying component and a rapidly varying component. The former
represents the mean pitch while the latter represents vibrato, slides
and other fast changes. The method is intended for use in applica-
tions that require fast and sample-by-sample estimates, like tuners
for musical instruments, transcription tasks requiring details like vi-
brato, and real-time tracking of voiced speech.

Index Terms— Pitch estimation, pitch tracking, music analysis

1. INTRODUCTION

Fundamental frequency estimation can be defined as the problem of
finding the fundamental frequency, or pitch, of an approximately pe-
riodic signal from a set of noisy observations, and many methods
for estimating the fundamental frequency or pitch' of music signals
have been devised. Some examples are maximum likelihood, least-
squares (LS), and weighted least-squares (WLS) [1-4], auto-/cross-
correlation and related methods [5], linear prediction [6], filtering
[3,7], and subspace methods [8] (see, e.g., [9] for an overview). This
paper is concerned with a specific type of fundamental frequency es-
timation, namely that of pitch tracking. Tracking is defined as the
act or process of following something. Pitch tracking is, hence, con-
cerned with following the continuous changes of the fundamental
frequency of a signal, and some ways in which this has been done
include [10] and [5]. In real-time applications that also require a
low delay, the pitch tracking problem then, essentially, boils down to
the following: given a set of new samples (in the extreme case just
one) and prior estimates of the fundamental frequency, find an up-
dated estimate of the fundamental frequency. Two examples of such
algorithms are the comb filtering approaches of [7, 11]. Pitch track-
ers are useful for several reasons, namely that a) they generally lead
to fast estimators, as the knowledge that the parameter of interest
evolves slowly can be be exploited; b) if the signal is indeed chang-
ing slowly, then this additional knowledge will lead to a more robust
estimator; c) they are built on the basic idea that the fundamental fre-
quency changes and are, hence, suited for non-stationary signals; d)
they lead naturally to the treatment of the fundamental frequency as a
continuous parameter and, hence, lead to a detailed parametrization

'We here use the terms fundamental frequency and pitch synomously
even though the latter term strictly speaking refers to the perceptual phe-
nomenon.
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of the signal of interest. The last point is important as many of the
existing methods are aimed at transcription and often are only con-
cerned with extracting the right semi-tone. This kind of accuracy is
not always sufficient, however. This is, for example, the case when
constructing tuners for musical instruments and when transcribing
or analyzing details like vibrato or glissando in music performances
(see, e.g., [12]). The same also holds for many speech applications,
where details in the pitch contour is of interest as is, for example, the
case in prosody and diagnosis of illnesses. For these problems, pitch
tracking can be a viable solution.

In this paper, we present a new pitch tracker based on a maxi-
mum likelihood estimator. The method provides sample-by-sample
estimates of the fundamental frequency with no look-ahead and em-
ploys an exponential forgetting factor in updating signal statistics,
something that allows it to follow non-stationary signals. Moreover,
it is computationally efficient compared to estimating the pitch with-
out an initial estimate, and it treats the fundamental frequency as
a continuous parameter so that details like vibrato and glissando in
music can be estimated. Finally, it employs a Kalman filter to smooth
and separate the obtained estimates into a mean pitch and fast fluctu-
ations. The principle here applied to maximum likelihood estimator
to obtain the pitch tracker can also be applied to a wide range of es-
timators, including also subspace and optimal filtering methods [9].

The remainder of this paper is organized as follows: In the next
section, Section 2, some notation and definitions are introduced
along with the basic estimator. In Section 3, the sample-by-sample
numerical optimization method is presented, after which the pro-
posed Kalman filter is introduced in Section 4. Then, in Section 5
some experimental results are presented, before Section 6 concludes
on the work.

2. THE BASIC ESTIMATOR

We will now present some basic notation along with the signal

model and the estimator the pitch tracker is based on. At time
n = 0,1,2,... the observed signal vector x(n) € R, defined as
x(n) = [z(n) --- x(n+ M —1)]" is modeled as

x(n) = Za(n) + e(n) M

where Z is a Vandermonde matrix whose columns contain the indi-
vidual harmonics of the real periodic signal, i.e.,

Z = [z(wo(n)) 2" (wo(n)) -+ z(wo(n)L) 2" (wo(n)L) ] (2)

eiw(M—1) }T

with z(w) = [1 e/ - .. and

ar(n) aj(n)]" 3)

where a;(n) is the complex amplitude of the /th harmonic at time n.
Moreover, -* denotes complex conjugation. The problem is then to

a(n) = [ai(n) aj(n) - --
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estimate the fundamental frequency wo(n) of Z. It should be noted
that natural sounds sometimes exhibit deviations from perfect peri-
odicity for a variety of reasons. There are several ways in which
this can be accounted for in the present work, but in the interest of
brevity we will not go into further details but rather refer to [9]. The
observation noise e(n) is assumed to be zero-mean white Gaussian
distributed with variance . With the assumed model, the covari-
ance matrix of the observed signal is given by

R(n) = B {x(n)x" (n)} = ZPZ" + o°1, )

where P = E {a(n)a(n)" } with -” denoting the Hermitian trans-
pose. The proposed methodology relies on this covariance matrix,
and it must hence be estimated from the observed signal. To do this
in a manner that facilitates adaptivity, we employ the following esti-
mates based on an exponential forgetting factor 0 < A < 1:

R(n) = AR(n — 1) 4+ x(n)x" (n). )

The forgetting factor controls the trade-off between having good es-
timates of the involved statistics and the adaptivity of the algorithm
in the same way as in adaptive filtering. For multiple observation
vectors, the maximum likelihood estimator for the fundamental fre-
quency can be shown to be the minimizer of the cost function [9]

J(wo(n)) = — Tr {z (sz)f1 ZHR(n)} , 6)

which facilitates the use of the covariance matrix estimate (5) in fun-
damental frequency estimation. More specifically, the fundamental
frequency can be estimated from this cost function as

Wo(n) = arg m(in) J(wo(n)) (7)

We note that a simpler but also less accurate estimator can be ob-
tained by exploiting the asymptotic orthogonality of sinusoids as
limas—oo M (Z7Z) ™" = 1, which avoids the use of matrix in-
version. The estimator in (7) is not a pitch tracker per se as it does
not exploit that the pitch changes slowly, but is is adaptive via the
use of the exponential forgetting factor in (5) and is, hence, capable
of handling non-stationary signals in the same manner as adaptive
filters. In the following, we assume that the parameters generating
the observation vector evolve slowly over time, i.e., that the pitch
changes slowly. When this is not the case, the algorithm must be re-
set with new initial parameters, namely the fundamental frequency
and the number of harmonics, obtained using some other estimator.
This can, e.g., be done using (7) by evaluating the cost function for a
wide range of wo(n) combined with a MAP order estimator [9, 13].

3. NUMERICAL OPTIMIZATION

We will now consider how to solve the optimization problem asso-
ciated with (7) in a computationally simple manner by exploiting
that the pitch changes slowly. We will do so using an iterative,
gradient-based method. In what follows we will denote iteration
indices as -(Y). Since we consider signals where the fundamental
frequency changes smoothly from one sample to the next, we use
o&ém (n) = @wo(n — 1) as a starting point. Then, based on the gradi-
ent g(-), update the fundamental frequency estimate fori = 0, 1,. ..

o (n) = &§ (n) — &P g(@ (n)), ®)
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where @@ is a step size. Next, we define the following useful quan-
tities: 5
Y& 7
Ouwo
The gradient of the cost function in (6) can now be shown to be

and ZT2 (sz)f1 VA ©)

9(@$? (n)) = 2Re {Tr {ZTHYHZZTR(n) +YZ'R(n) }} .

The procedure in (8) requires that the step size is found. This can be
done in an optimal manner using so-called exact line search:

&Y = argmin J((I)(gz)(n) — ag(d)éi)(n))). (10)

However, this is generally too complex for our purposes due to the
nonlinear nature of the problem. Instead we will proceed by em-
ploying some approximations from [14]. The second-order Taylor

expansion of the cost function J(-) around wéi) (n) is given by

T(@5” (n) — ag(@g” (n))) ~ J (@ (n) (1n
g @ )2+ 2a*P@P AP (), (12)

where h(-) is the Hessian of J(-). From this, it is possible to solve
for the optimal step-size . However, it requires that the Hessian be
known and simple to compute. For the problem at hand, the Hessian
ends up being rather complicated, and we instead employ a simpler
procedure. Based on the Taylor expansion for an initial estimate of
the step size, which conveniently can be chosen as the estimate from
the prior iteration &%, the step size for iteration ¢ > 1 can be
approximated as [14]

(@2 (@ (n))?

al = : ,
2(A+a0=Dlg@ ()2

13)

with A = J(@8 (n) — a0V g (n))) = J(@§” (n)). Fori = 0,
a small value is simply used in computing (13). The process above
is then repeated for each n until convergence is achieved after, say,

I iterations and our estimate is then o (n) = 42;(()1) (n).

4. KALMAN FILTER

We will now proceed to present the Kalman filter used to refine the
obtained estimates. The function of the Kalman filter is twofold:
firstly, it is used for smoothing the obtained estimates, and, secondly,
it is used for splitting the estimate into a slowly-varying part and a
rapidly varying part, representing the mean pitch and fast variation,
like, e.g., vibrato. In math, the model is wo(n) = @o(n) + do(n),
where wo(n) is the mean pitch and do(n) the fast variations. These
quantities are organized in a state-vector as s(n) = [ @o(n) do(n) ]©
and their temporal development is here modeled via the so-called
state equation given by

s(n) = As(n — 1) + u(n), (14)

where A is the state transition matrix and u the driving noise. The
observations are then modeled as being generated from the states by

z(n) = h7s(n) + w(n), (15)

which is the so-called observation equation. Here, w(n) is the ob-
servation noise and h = [11 ]T. In our case, the observations are
the estimated noisy fundamental frequencies obtained as described



in the previous section, i.e., z(n) = @o(n) and the aim is to find an
estimate of the state vector s(n) from z(n). The observation noise
w(n) is assumed to be normal distributed with variance o2, while
the driving noise is assumed to be normal distributed with covari-
ance matrix C). This is motivated by the employed estimator being a
maximum likelihood estimator, which for a sufficiently large number
of samples will produce estimates that are Gaussian distributed [15].
The state-transition matrix is chosen to be diagonal. It transition
matrix essentially models the elements of s(n) as being generated
by first-order auto-regressive processes. Since we expect the mean
pitch to be varying slowly compared to the fast variations, it should
be hence also be more highly correlated to past values. Moreover, we
expect the driving noise associated with the mean pitch to be small
compared to that of the fast variations.

In the following, the notation §(n|m) means the estimate of s(n)
based on {z(n)}n—y and similarly for other quantities. The state es-
timates are obtained by going through the following steps of finding
various quantities forn = 0,1, ... (see [15] for details):

1. Prediction:
§(njn—1)=As(n—1n—-1) (16)
2. Minimum Prediction MSE Matrix:
M(njn —1) = AM(n —1ln - 1)A" +C (17

3. Kalman Gain Vector:

M(n|n —1)h

(n) = o2 + hTM(njn — 1)h (18)

4. Correction:
8(n|n) = 8(n|n — 1) + k(n)(z(n) — h"8(njn — 1)) (19)
5. Minimum MSE Matrix:

M(n|n) = (1 - k(n)hT) Mnn—1).  (20)

The quantity of interest is S(n|n) in our case, which is obtained
from the so-called correction step. IM(n|m) is the mean square error
(MSE) matrix defined as

M(nfm) = E {(s(n) — 8(njm))(s(n) —$(nm)) "} (21)

and k(n) the so-called Kalman gain vector. Some initialization is
requirede, namely that §(—1| — 1) and M(—1| — 1) be chosen.

5. EXPERIMENTAL RESULTS

We will now present some experimental results. In the experiments
to follow, we will demonstrate the usefulness of the proposed method
in analyzing transient audio signals. To do this, we use two record-
ings of notes played on a guitar. The signal was recorded using a
TC Electronic Konnekt 24D at a sampling frequency of 44.1 kHz.
The guitar was an Ibanez RGA321 SPB with Seymour Duncan pick-
ups and it was connected directly to the recording device. In the
first recording, a note is bent by two semitones followed by vibrato.
In the second, a shift slide by two semitones is executed. The pro-
posed pitch tracking algorithm is initialized with fundamental fre-
quency and order estimates obtained from the first 100 ms of the
signals using the ANLS method in combination with a MAP or-
der estimate [9]. The first 100 ms were also used to initialize an
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Fig. 1. Spectrogram of a bended note (two semitones) ending in vi-
brato played on an electric guitar. The signal has been down-sampled
for visual clarity.
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Fig. 2. Pitch tracks estimated from the signal in Figure 1. Shown are

the estimated pitch (top panel, solid line), the mean pitch (top panel,
dashed line) and the fast variations (bottom panel, dash-dotted line).

estimate of the sample covariance matrix after which it is updated
using (5). For each sample, after the covariance matrix has been
updated, the numerical optimization procedure described in Sec-
tion 3 is performed initialized with the last estimate. Then, the
Kalman filter in Section 4 is used to smooth the estimate and split
it into mean pitch and fast variation. The settings for the algorithms
were as follows: M = 400 was used along with A = 0.99. In
the Kalman filter, the estimate obtained from the ANLS method
was used for initializing §(—1| — 1), the state-transition matrix was
A = diag ([1—107°0.99]), and the MSE matrix was initial-
ized as M(—1| — 1) = 10 °I. Moreover, the noise statistics were
0w =107 and C = diag ([25-107'%4-107®]). These values
have all be found empirically to yield good results on other data.
The spectrogram of the first signal is shown in Figure 1. Both the
bend and the vibrato are clearly evident. In Figure 2, the results are
shown in terms of the pitch estimate obtained by the numerical opti-
mization procedure, the mean pitch and the fast variation. It should
be noted that usually only a handful of iterations are required before
the numerical optimization method has converged. As can be seen,
the fast variation contains the sudden change of the bend and the vi-



brato, from which the rate of change of the bend and the frequency
and depth of the vibrato can be found. The mean pitch varies slowly
from the initial tone to the final one. In Figure 3, the spectrogram
of the second signal is depicted. It shows that some strongly tran-
sient phenomena occur during the shift slide. These happen when
the fingers slide across the fret wire, from one note to the next. The
estimated quantities are shown in Figure 4 in the same way as be-
fore. In this case, the fast variations account only for the slide itself.
It is interesting to note that the transient phenomena and the sudden
changes caused by the frets do not appear to pose a problem to the
pitch tracker. Both examples clearly demonstrate the ability of the
proposed estimator to track the pitch when the pitch varies fast. The
figures also clearly demonstrate the usefulness of the Kalman filter
in splitting up the estimates.

6. CONCLUSION

In this paper, a new low-delay method for pitch tracking has been
presented. It is based on a maximum likelihood principle and pro-
vides sample-by-sample estimates of the pitch based on it evolving
smoothly over time. These estimates are obtained using a simple
and fast numerical optimization method. The so-obtained estimates
are smoothed and split up into a mean pitch and fast variations us-
ing a Kalman filter. Simulations on guitar recordings show that the
method can indeed track transient phenomena such as bends and
slides. The method can be useful in several different applications,
including real-time ones like tuning of musical instruments but also
in other situations like in automatic transcription of music or analysis
of stylistic details in music performances.
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