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ABSTRACT

In this paper we present a construction method for window functions
with constant-overlap-add (COLA) constraint for spectral analysis-
synthesis with a given percentage of window overlap. The window
functions are derived from the shortest possible COLA window i.e.,
the rectangular window. The construction method allows to adjust
the side-lobe fall-off and to fulfill the COLA constraint for arbitrary
window shifts. The procedure results in a family of window functi-
ons which includes some well known members (the Bartlett and the
Hann window) for 50% overlap.

Index Terms— constant-overlap-add, window family

1. INTRODUCTION

A frequently used method for processing an audio signal is to split
it into overlapping segments and to transform them into the fre-
quency domain using a window function and the short-time Fourier
transform [1]. Then, a synthesis window and the overlap-add me-
thod can be used to reconstruct the output signal from the proces-
sed segments which are transformed back into time domain using
the inverse Fourier transform. A desirable constraint for such a si-
gnal processing architecture is that unprocessed segments result in
an output signal which is - apart from a time shift - a perfect re-
construction of the input signal. Many windows1 have been propo-
sed for this purpose. For instance, the members of the general Ham-
ming window family, like the well known Hamming and Hann win-
dow, as well as the Barlett (triangular) window fulfill this COLA
constraint for 50% overlap and certain other percentages. The mem-
bers of the three-term Blackman window family [2, 3], require 75%
or a even greater percentage of overlap. In general, every member
of the Blackman-Harris window family i.e., a window of the form

w(t) =
∑K

k=0 ak cos
(

2πkt

TT

)
, t ∈

[
−TT

2
, TT

2

]
, fulfills the COLA

constraint for 100% − 50%
N lcm(1,...,K)

, N ∈ N, overlap where lcm(·)
denotes the least common multiple. The construction method for
COLA windows which we propose in this paper is intended for ana-
lysis/synthesis systems where the restriction to certain window shifts
is a limitation.

This paper contains two main parts and is organized as follows:
in Sec. 2 we will present a method for the construction of COLA
windows for a given frame shift and transformation period. Then, in
Sec. 3, we introduce a new COLA window family which features a
maximally steep side-lobe fall-off for a given window order.

∗The content of this paper was developed when the author was with the
Institute of Communication Acoustics, Ruhr-Universität Bochum.

1This refers to the product of the analysis and the synthesis window.

2. WINDOW CONSTRUCTION

In the following we will use the term COLA window to denote a
window function w(t) which fulfills the COLA constraint,

∞∑
k=−∞

w(t− kTS) = 1 , (1)

where TS denotes the frame shift of the periodically applied window.
A function which fulfills this constraint is the rectangular win-

dow of length TS ,

rS(t) = rect(t/TS) (2)

rect(t) =

{
1, if t ∈

]
− 1

2
, 1
2

]
0, else

. (3)

This is the shortest possible COLA window and due to this funda-
mental property we will use rS(t) as basis for the construction of
COLA windows.

The COLA constraint (1) is linear and time-invariant. Hence, the
sum of shifted and weighted COLA windows also fulfills the COLA
constraint, if the sum of the weights is equal to 1. This can be further
generalized by considering an infinite large number of shifted win-
dows with infinitesimal small weights. The limiting process results
in a convolution integral,

w(t) = rS(t) ∗ g(t) =

∫
∞

−∞

rS(τ)g(t− τ)dτ , (4)

where g(t) denotes a superposition density. The correctness of this
proposition can be shown by inserting (4) into (1) and changing the
order of the summation and integration,

∞∑
k=−∞

∫
∞

−∞

rS(τ − kTS)g(t− τ)dτ =

∫
∞

−∞

g(t− τ)
∞∑

k=−∞

rS(τ − kTS)dτ =

∫
∞

−∞

g(t)dt = 1 . (5)

Hence, g(t) can be any integrable function which fulfills the norma-
lization constraint (5).

In practice where w(t) is used to determine the short-time Fou-
rier transform over a transformation period TT , w(t) needs to be
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time-constrained. In the design of g(t) this constraint can be enfor-
ced by a multiplication of an arbitrary integrable function f(t) with
a rectangular function rL(t) of length TL = TT − TS ,

g(t) = f(t)rL(t) (6)

rL(t) = rect(t/TL) , (7)

where f(t) fulfills the following normalization constraint:

∫ TL

2

−

TL

2

f(t)dt = 1 . (8)

For a given frame shift TS and transformation period TT this allows
for constructing a COLA window as follows:

w(t) = rS(t) ∗ (rL(t)f(t)) . (9)

The choice of f(t) is detailed in the following section.

3. GENERALIZED WINDOW FAMILY WITH
ADJUSTABLE SIDE-LOBE FALL-OFF

As window functions are used for spectrum analysis, their spectral
properties are of essential importance. Hence, for designing a COLA
window it is favorable to use a frequency domain formulation of the
construction equation by applying the Fourier transform to (9),

W (f) = RS(f) (RL(f) ∗ F (f)) . (10)

As a matter of fact, the proper choice of F (f) or the method for
its construction depends on the application. For instance, the criteria
proposed by Adams [4] or Slepian [5, 6] could be used to obtain an
optimal window for a given analysis/synthesis system.

A simpler solution is obtained by using a conventional window
like the Kaiser window [7], the Dolph-Chebyshev window [8], or a
member of the Blackman-Harris window family [2]. The latter are
polynomially attenuated functions where the order of the polynomial
defines the main lobe width. In order to provide some structure and
to gain a deeper insight into this window family, we extend this fa-
mily in the following paragraphs and derive a new family of COLA
windows with maximally steep side-lobe fall-off.

3.1. Trivial Choice

The first member of our window family results from choosing the
Dirac delta,

F0(f) = c0δ (f) , (11)

with the normalization coefficient c0 = 1
TL

. The index, that is also
used in the following paragraphs, is utilized to distinguish between
the different members of the window family and indicates the order
of the window. As the Dirac delta is the identity element with re-
spect to convolution, the spectrum W0(f) of the 0th-order window
is given by the product of RS(f) and RL(f). The spectra of these
rectangular windows have the form of a scaled sinc function,

F {rect (t/T )} = T sinc (πTf) , (12)

which has zero crossings at integer multiples of 1/T . Hence, W (f)
has zero crossings at integer multiples of 1/TS and 1/TL, and the
width of the resulting main-lobe is the minimum of the main-lobe
width of RS(f) and RL(f).

In time domain, the 0th-order window is given by the convoluti-
on

w0(t) = c0rS(t) ∗ rL(t) (13)

−5/T −4/T −3/T −2/T −1/T 0 1/T 2/T 3/T 4/T 5/T

G
2
(f

)

f

Fig. 1. G2(f): spectrum of a Hann window (solid) which results
from the superposition of 3 shifted sinc functions (dashed)

which results in a tapered window with linear slopes. A special case
is produced for TS = TL = TT /2 (50% overlap) where the tapered
window becomes the well known Bartlett (triangular) window.

3.2. Side-Lobe Reduction

The w0(t) window exhibits significant side-lobe levels, that can be
reduced by applying the same principle which is used for the con-
struction of the Hann window [2]. Such a window results from the
sum of a cosine and a constant bias, multiplied by a rectangular win-
dow. In frequency domain, this corresponds to the superposition of
three shifted sinc functions which compensate the side-lobes as illu-
strated in Fig. 1. The same principle can be applied by choosing

F1(f) = c1δ

(
f +

1

2TL

)
+ c1δ

(
f −

1

2TL

)
(14)

with c1 = π

4TL

to fulfill the normalization constraint. Convolved
with RL(f), this results in the spectrum G1(f) which is shown in
Fig. 2. Applying the inverse Fourier transform to (14) yields the time
domain representation,

f1(t) = 2c1 cos

(
πt

TL

)
. (15)

Accordingly, g1(t) is the well known cosine window. And as w(t)
results from the convolution of rS(t) and g(t), the 1st-order window
w1(t) is a Tukey window for TS > TL and a Hann window for
TS = TL [9].

3.3. Higher-Order Windows

For the 1st-order window w1(t), we utilized the property that adding
two functions which have the form sin(x)

x
and which are shifted by

−5/T −4/T −3/T −2/T −1/T 0 1/T 2/T 3/T 4/T 5/T
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f

Fig. 2. Reduced side-lobes of the spectrum G1(f)
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one period, where x = πTLf , results in reduced side-lobes,

G0(x) =
1

x
sin(x)

G1(x) = G0

(
x+

π

2

)
+G0

(
x−

π

2

)

=
−4π

4x2 − π2
cos(x) . (16)

As the cos term is attenuated by a rational function with a strictly
monotonic decreasing asymptote, the side-lobes can be further redu-
ced by applying the same method again and again,

Gn+1(x) = Gn

(
x+

π

2

)
+Gn

(
x−

π

2

)
(17)

G2(x) =
−2π2

x3 − π2x
sin(x) (18)

G3(x) =
96π3

16x4 − 40π2x2 + 9π4
cos(x) (19)

. . . .

Every iteration increments the polynomial order of the denominator
and thus improves the side-lobe fall-off by 6 dB / octave.

Consequently, we define the higher-order members of our win-
dow family by the construction spectra which are defined as follows,

Fn(f) = cnF1(f) ∗ Fn−1(f) , (20)

where cn results from fulfilling the normalization constraint (8).
This iteration results in a series of Dirac deltas where the individual
weights are the binomial coefficients. The resulting Gn(f) are the
spectra of the time-constrained cosn windows. Consequently,G2(f)
is the spectrum of a Hann window (see Fig. 1), andw2(t) is the result
of a Hann window convolved with a rectangular window. The even
order spectra Gn(f) are specific members of the Blackman-Harris
window family while the odd order spectra are members of an exten-
ded Blackman-Harris window family which also includes windows

of the form w(t) =
∑K

k=1 ak cos
(

π(2k−1)t
TT

)
. Figure 3 illustrates

the first members of the presented window family. Note, that a time
domain approach for the extension of the Blackman-Harris window
family was recently (and independently) proposed in [10]. However,
our formulation in the frequency domain provides a quantification of
the polynomial attenuation which is discussed in more detail below.

3.4. Properties of Gn(f)

The definition (20) results in a spectrum Gn(f) which has the form

G2K(x) = sin(x)

2K∑
k=0

ak

x− xk

(21)

G2K+1(x) = cos(x)

2K+1∑
k=0

ak

x− xk

, (22)

where the sum of the partial fractions can be combined to a ratio-
nal function of the form PN (x)

PD(x)
. The poles of this rational functi-

on are compensated by the zeros of the sin/cos term. The order of
PN (x) and PD(x) define the order of the asymptote that attenuates
the sin/cos term. For the chosen weights i.e., the binomial coeffi-
cients with alternating signs, the numerator polynomial PN (x) is
reduced to 0th-order. Other weights could be used e.g., to reduce the
maximum side-lobe level, but this would also reduce the order of

the asymptote. Hence, the proposed window family is optimal with
regard to the asymptotic decay (the side-lobe fall-off).

As can be observed in Fig. 3, the level of the first side lobe of
Wn(f) increases with its order, if the width of the main lobe of
Gn(f) largely exceeds the main lobe of RS(f). Hence, the order
is limited to a reasonable range and high orders are of practical use
only for a large window overlap.

4. CONCLUSIONS

The presented construction method for window functions produces
windows with constant-overlap-add (COLA) constraint for any per-
centage of overlap. In our formulation, the shortest possible COLA
window is used as a template to produce COLA windows with given
properties.

We introduced a family of window functions with increasing or-
der n featuring an optimal side-lobe fall-off with a (n+2)6 dB / oc-
tave slope. We showed that the Bartlett (triangular) and the Hann
window are the first members of this family for 50% overlap. Hence,
the presented family can be regarded as a generalization for arbitrary
frame shifts and adjustable side-lobe fall-offs.
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Fig. 3. First members of the window family and their construction spectra (normalized for better comparability)
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