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ABSTRACT

We investigate the suitability of semi-supervised learning in sound
event classification on a large database of 17 k sound clips. Seven
categories are chosen based on the findsounds.com schema: animals,
people, nature, vehicles, noisemakers, office, and musical instru-
ments. Our results show that adding unlabelled sound event data to
the training set based on sufficient classifier confidence level after its
automatic labelling level can significantly enhance classification per-
formance. Furthermore, combined with optimal re-sampling of origi-
nally labelled instances and iteratively learning in semi-supervised
manner, the expected gain can reach approximately half the one
achieved by using the originally manually labelled data. Overall,
maximum performance of 71.7 % can be reported for the automatic
classification of sound in a large-scale archive.

Index Terms— Sound Event Classification, Semi-supervised
Learning

1. INTRODUCTION

Sound event classification is attracting a growing attention recently in
the field of acoustic signal analysis. Not only because it bears great
interest for application in multimedia search based on sound with the
rapid growth of multimedia data available on the web, but as it is also
one of the most important key components to analyse environments,
e. g., in surveillance [1, 2], monitoring of people in need of care,
or detecting, localising, tracking and classifying sources of military
interest in real time [3]. Obviously, there is also great benefit for
humanoid and general robots, such as the one introduced in [4] for
kitchen tasks, to better understand their acoustic environment. Finally,
there is hope to better recognise and enhance speech and music, once
the sound type of disturbance can be identified. Yet, most of the
previous research focuses on comparatively small scale and often
prototypical databases (e. g., as in [5]). In [4, 6], however, roughly
6 000 and 7 000 instances are investigated, respectively, for sound
event classification. In table 1 a selective overview on related other
work is given. – obviously, we cannot take into account all existing
literature in this domain.

In this paper, we will focus on sound events classification in a
large scale database, covering sound classes that reach from nature
(i. e., nature, animals) over human beings (i. e., people) to artificial
sounds (i. e., office, musical instruments, noisemakers, and vehicles).
Furthermore, there is an ever-lasting belief in pattern recognition that
‘there is no data like more data’. Compared to automatic speech recog-
nition where many corpora comprise hundreds of hours of transcribed
speech, databases annotated in sound event classification are still
sparse as shown above. Semi-supervised and unsupervised learning
can be a promising approach to remedy the issue of this data sparsity:
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Table 1: Selective overview on previous research on sound event
classification. Abbreviations are inst.: instance, I: isolated events, S:
stream, F: frame level, C: per clip, and for feature types, E: Energy,
FFBE: frequency-filtered band energies, ICA: Independent Com-
ponent Analysis, MFCC: Mel-frequency cepstral coefficients, MP:
matching pursuit, STE: subband temporal envelopes.
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[2] 134 5 S F MFCC+E surveill.
[7] 3 000 14 I C MP+MFCC environ.
[8] 115/ 7/ I F MFCC health

10 500 105 care
[9] 918 12 I F MFCC meeting
[10] 1 030/ 16 I/S F MFCC+E,

729/172 FFBE meeting
[4] 5 992 21 I F ICA kitchen
[11] 732 8 I F MPEG-7 urban
[6] 705 10 I C STE office &

canteen

Assuming sufficiently robust automatic sound event classification en-
gines, unlabelled data can be classified and integrated into an iterative
re-training process. Such unlabelled data is practicably available in
‘infinite’ amount: One could not only profit from recording real life
audio streams typically filled with various kinds and huge number of
sound events [12], but add data from the web. Notably, studies deal-
ing with semi-supervised adaptation of acoustic and language models
in automatic speech recognition [13,14] suggest that addition of unla-
belled data in training is competitive with labelled data, even more
so if one considers the enormous efforts usually required for manual
annotation of speech data. Further, in speech recognition, recent real-
life studies as the Google Voice Search show that semi-supervised
learning has in fact already turned into common practice. As a rule of
thumb, the need of roughly ten times the amount of unlabelled data
is named there in comparison to labelled data in order to obtain the
same gain as with labelled data. We thus investigate semi-supervised
learning to improve a sound event classifier in continuation of our re-
lated efforts in semi-supervised emotion recognition [15]. The paper
is structured as follows: in Section 2 we introduce the FINDSOUNDS

sound event database that we use to classify real life sounds in seven
categories. Then, we describe our brute force extraction of features
and the classifier set-up in Section 3. In Section 4, we investigate
the performance of semi-supervised learning before concluding in
Section 5.

333978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



Table 2: Quantitative description of the FINDSOUNDS database.

Category # Subsets # Clips Duration [h]
People 45 2 540 2 h 9 min
Animals+Birds 85 2 841 2 h 42 m
Nature 19 937 1 h 17 min
Vehicles 34 2 166 2 h 47 min
Noisemakers 13 2 010 1 h 56 min
Office 18 1 769 1 h 01 min
Musical Instruments 62 4 674 3 h 49 min

Total 276 16 937 15 h 41 min

2. THE FINDSOUNDS DATABASE OF SOUND EVENTS

For the modelling and recognition of sound events, we collect au-
dio data from the web via the FindSounds site1 which provides a
large amount and variety of sound events from real life. In addition,
these sounds are readily categorised, and we stick with this schema.
However, in order to better suit for our experiment, we disregard the
categories without sufficient audio instances and cluster birds with
animals, which leaves seven categories of common sound events in
real life from sixteen:

People: produced by 45 different human behaviours, such as
biting, baby’s crying, coughing, laughing, moaning, kissing, etc.
Animals (including birds): come from 69 different non-bird animals,
such as cat, frog, bear, lamb, blackbird, etc., and 16 kinds of birds.
Nature: includes 19 kinds of original sounds from nature environ-
ment, for instance, earthquake, ocean waves, flame, rain, wind, etc.
Vehicles: take 34 different types of vehicles and their behaviours into
account, like motorcycling, braking, helicopter, closing door, etc.
Noisemakers: are composed of 13 various events in this domain such
as alarm, bell, whistle, horn, etc.
Office: includes original office space sound events including key-
board typing, printing, telephoning, mouse clicking, etc.
Musical Instruments: stem from 62 various musical instruments like
bass, drum, synthesiser, etc.

We converted all of the audio files into raw 16 bit encoding,
mono-channel, and 16 kHz sampling rate since various formats and
rates are used in the original versions as were retrieved from the
web. Each of the sound clips generally lasts between 1 s to 10 s.
Finally, roughly 15 hours of recording time and 16 937 instances
were obtained in total, covering 276 aspects of real life sound events.
Further details on the distribution of instances and total play time
per category are summarised in Table 2. Owing to the origin of
the sounds and classification scheme, this set will be referred to as
FINDSOUNDS database.

3. ACOUSTIC FEATURES AND CLASSIFIER

Using our open-source openEAR [16] toolkit’s feature extraction
back-end openSMILE (Speech and Music Interpretation by Large
space Extraction) [16], we extract the ‘AVEC’ set that consists of
1 941 features, composed of 25 energy and spectral related low-level
descriptors (LLD) x 42 functionals, 6 voicing related LLD x 32
functionals, 25 delta coefficients of the energy/spectral LLD x 23
functionals, 6 delta coefficients of the voicing related LLD x 19
functionals, and 10 voiced/unvoiced duration features. Details for the

1http://www.findsounds.com/types.html – accessed on 25 July 2011.

Table 3: Set of all 42 functionals. 1not applied to delta coefficient
contours. 2for delta coefficients the mean of only positive values is
applied, otherwise the arithmetic mean is applied. 3not applied to
voicing related LLD.

Statistical functionals (23)
(positive2) arithmetic mean, root quadratic mean
standard deviation, flatness, skewness, kurtosis
quartiles, inter-quartile ranges
1 %, 99 % percentile, percentile range 1 %–99 %
percentage of frames contour is above: min + 25%, 50%,

and 90 % of the range
percentage of frames contour is rising

max, mean, min segment length3, std. dev. segment length3

Regression functionals1 (4)
linear regression slope, and corresponding approximation error
quadratic regression coefficient a, and approximation error

Local minima/maxima related functionals1 (9)
mean and standard deviation of rising and falling slopes

(minimum to maximum),
mean and standard deviation of inter maxima distances
amplitude mean of maxima, amplitude mean of minima,

amplitude range of maxima

Other1,3 (6)
LP gain, LPC 1-5

Table 4: Set of 31 low-level descriptors.

Energy & Spectral (25)
loudness (auditory model based), zero crossing rate,
energy in bands from 250 – 650 Hz, 1 kHz – 4 kHz,
25 %, 50 %, 75 %, and 90 % spectral roll-off points,
MFCC 1–10, spectral flux, entropy,
spectral variance, skewness, kurtosis,
psychoacoustic sharpness, harmonicity

Voicing related (6)
F0 (Sub-harmonic summation (SHS) followed by

Viterbi smoothing), probability of voicing,
shimmer (local), jitter, ‘jitter of jitter’,
logarithmic Harmonics-to-Noise Ratio (logHNR)

functionals and LLDs are given in tables 3 and 4, respectively. The
set of LLD covers a standard range of commonly used features in
audio signal analysis and classification. The functional set has been
based on similar sets, such as the one used for the INTERSPEECH
2011 Speaker State Challenge [17], but has been carefully reduced to
avoid LLD/functional combinations that produce values which are
constant, contain very little information and/or high amount of noise.

As classifier, we use Random Forests which can provide very
good generalisation properties and are able to well cope with large
feature spaces, as each tree in a forest fulfils an implicit information
gain based feature ranking. In addition, feature sub-spaces are ran-
domly assigned to the trees of the forests. Thus, for representative
results in our experiments, we chose Random Forests with 30 trees,
and 150 random features for each tree in a forest. For further repro-
ducibility besides using our open source feature extractor and the
FINDSOUNDS database that can be retrieved from the web, we use
the classifier implementation provided by the Weka toolkit [18].
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Table 5: Confusion matrix for seven categories of sound event clas-
sification using original labels for both training folds F1 and F2 (cf.
line ‘supervised’ in table 8). FINDSOUNDS database.
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People 564 153 11 26 17 25 50
Animals 126 717 7 35 23 20 18
Nature 18 35 157 42 44 10 6
Vehicles 37 37 26 476 86 15 45
Noisem. 22 43 36 77 372 72 48
Office 29 37 1 16 111 364 31
Instrum. 32 33 6 31 47 16 1395
Confusions 264 338 87 227 328 158 198

4. EXPERIMENTS

4.1. Sound Event Classification

As preferred evaluation measure we employ average recall among
classes without weighting by the number of instances, i. e., un-
weighted accuracy (UA) as was suggested in [17]. The reason for this
choice is the imbalance among the classes. Further, we partly addi-
tionally provide ‘normal’ (weighted) accuracy (WA), precision, and
F1-measure in the summary of optimal configuration. There, we also
provide the average area under the receiver operating characteristic
(ROC), which plots the true positive rate over the false positive rate
achieved by a binary classifier for each class vs. the remaining ones.
The area under curve (AUC) generally reaches from 0.5 (random
guessing) to 1.0, equal to the whole graph area.

The experiments were performed based on random partitioning
of the FINDSOUNDS database into three stratified folds to allow for a
partitioning into two training and one completely disjunct testing set.
This is needed, as the first fold (F1, 5 646 instances) is used with its
original manually assigned labels for training, each. The second fold
(F2, 5 646 instances) is used either without its original labels (F2U ,
‘unlabelled’) or with these labels (F2) in order to be able to compare
using it in semi-supervised or supervised manner for training. Finally,
the third folder (5 645 instances) is always used for testing.

Table 5 first gives the confusion matrix for seven categories of
sound event classification using the original labels from fold 1 and 2 in
the training. This resembles the highest accuracy in our experiments
and shall give a good overview on arising confusions in ‘best case’.
It can be seen that the sounds from people and animals tend to get
confused just as sounds from vehicles, noisemakers and in the office
environment do – this is well in line with expectation by common
sense.

4.2. Semi-supervised Learning in Sound Event Classification

From now on, to next investigate the potential of semi-supervised
learning for sound event classification, we first take fold 1 with its
original labels for training (F1, as shown in Table 8) and fold 3 for
testing as a baseline reference, i. e., in this baseline fold 2 is ignored.
Second, we agglomerate for training fold 1 with its original manually
assigned labels and fold 2 without its original labels but labelled by
the system trained on fold 1 for semi-supervised adaptation in diverse

Table 6: Unweighted accuracy of semi-supervised learning with
different confidence levels combined with/-out re-sampled manually
labelled data. 2·F1: re-sampling (doubling up) fold 1 instances;
F21U : from fold 2 select the instances with a confidence level above
0.45, 0.5, 0.6, 0.7, 0.8, separately after classification based on fold 1.
FINDSOUNDS database.

Confidence Level
UA [%] > 0.45 > 0.5 > 0.6 > 0.7 > 0.8

F1+F21
U 61.3 61.5 61.5 61.6 62.1

2·F1+F21
U 62.0 62.1 61.5 63.1 62.5

Table 7: Unweighted accuracy of iterating semi-supervised learning
with confidence values above 0.7 and 0.8 combined with re-sampling
or non-re-sampling manually labelled data. 2·F1: re-sampling (dou-
bling up) fold 1 instances; F21U , F22U , F23U : the first, second,
and third time of iterating semi-supervised learning. FINDSOUNDS

database.

Confidence Level
> 0.7 > 0.8

UA [%] F1 2·F1 F1 2·F1
F21

U 61.6 63.1 62.1 62.5

F22
U 62.0 62.2 63.0 62.6

F23
U 62.0 61.7 62.6 63.2

strategies (F1 + F2U , as shown, for example, in Table 8), and again
test on fold 3. Finally, as a reference for supervised learning, we
consider agglomerating fold 1 and fold 2 using the original labels of
both for training (F1 + F2, as shown in Table 8), and also use fold 3
for testing.

As to the semi-supervised learning, we take the confidence of the
classifier in five levels into account (> 0.45, > 0.5, > 0.6, > 0.7, and
> 0.8) to enhance the influence of correctly labelled data in the semi-
supervised labelling process and suppress falsely labelled data. Fur-
thermore, we consider two additional strategies: re-sampling of the
originally labelled data and repeatedly iterating the semi-supervised
learning process. In Table 6, it can be seen that, with increasing
confidence level, the unweighted accuracy of training on agglomer-
ated non-re-sampled labelled data (1·F1) and conditionally selected
instances from semi-supervised learning (F21

U ) gradually increases
from 61.3 % to 62.1 %. To emphasise more on the manually labelled
data for the classifier, the table next shows re-sampling by copying
(2·F1). Compared to the former non-re-sampled strategy, the per-
formance is improved. The most impressive gain is seen when the
confidence level is higher than 0.7, achieving UA of 63.1 %. The
details for this accuracy are also shown in Table 8. With the iterating
strategy, i. e., repeatedly re-labelling the unlabelled data fold 2 using
fold 2 in training with labels from the last iteration, we only took
into acount confidence levels higher than 0.7 according to the former
experiment. Table 7 shows the UA of up to three times iterating the
semi-supervised learning process. When non-re-sampling (1·F1), a
gain is also obtained (62.0 % vs. 61.6 % UA for confidence level >
0.7, and 63.0 % vs. 62.1 % UA for confidence level > 0.8). How-
ever, we notice that iterating benefit is limited, as UA partly begins
to decrease after the third iteration. Even a larger iteration number
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Table 8: Classification evaluation on seven sound categories with un-/supervised learning. Rec.: recall, U/WA: un-/weighted accuracy, Prec.:
precision, AUC: Area Under receiver operating Characteristic. FINDSOUNDS database.
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Prec. F1 AUC
supervised (baseline): F1 61.1 67.0 61.7 68.2 39.7 60.2 52.7 57.9 87.2 66.9 66.7 91.8

semi-supervised: 2·F1+F21
U 63.1 68.5 61.7 72.5 47.4 61.8 51.9 58.4 87.9 68.3 68.1 91.9

supervised (all): F1+F2 66.5 71.7 66.7 75.8 50.3 65.9 55.5 61.8 89.4 71.6 71.5 92.7

will not lead to better results (not shown in the table). Finally, we
combined the re-sampling and iterating strategies striving to exploit
the advantages of both. From the line 2·F1 in Table 7, it can be seen
that re-sampling outperforms the baseline setting in 4 out of 6 cases.

In conclusion, the comparison of the baseline reference (F1),
most efficient semi-supervised learning (2·F1+F21

U ), and supervised
learning (F1+F2) are shown in detail in Table 8. As expected, the
best average result is obtained when using the original labels of the
data partitions fold 1 and fold 2 for training (66.5 % UA). Yet, this
also clearly shows that the semi-supervised learning significantly
(one-sided z-test, p < 0.05) improves the performance of sound event
classification with boost in UA of 2 % absolute over not using fold 2
at all which is almost half the gain achieved by supervised training
(5.4 %). In our case, the nature class being the most sparse, benefited
most from semi-supervised learning.

5. CONCLUSION

We investigated the potential of semi-supervised learning in a large
scale sound event classification task. The results show that adding
unlabelled data with high confidence level to the training data can en-
hance recognition performance. Furthermore, re-sampling originally
labelled data and iterating the semi-supervised learning process both
boosted classification accuracy in our experiments by strengthening
the weight of the originally labelled data, while the latter strategy
gradually increases the semi-supervised learning advantage. How-
ever, the results are – as one would expect – below the gain that can
be expected when adding labelled data. Yet, the fact that manual
labelling of sound event data is highly costly while large amounts
of sound event data per se are publicly available makes consider-
ation of semi-supervised learning a promising approach in future
machine-based sound analysis.

Our future efforts will continue to focus on agglomerating huge
amounts of unlabelled sound event data and its application in analysis
of real-life sound streams in combination with source separation.
Further, active learning can be involved to decide on which new
instances are promising before classifying them and adding them to
the learning material. Finally, newly labelled data could be associated
with multiple classes in a fuzzy manner based on the confidence
measure, rather than with only one as was done here.
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[15] Z. Zhang, F. Weninger, M. Wöllmer, and B. Schuller, “Unsuper-
vised Learning in Cross-Corpus Acoustic Emotion Recognition,”
in Proc. IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU), Big Island, HY, 2011.
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