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ABSTRACT 

 
In this paper, we propose a new adaptation mode controller (AMC) 
for a generalized sidelobe canceller (GSC) having prior knowledge 
of the direction-of-arrival (DOA) of a desired speech source. In 
order to optimize the adaptation mode of a GSC, the residual noise 
remaining in the GSC output must be employed for adapting the 
AMC. The residual noise in the GSC output is estimated by using a 
short-time Fourier transform (STFT)-based Wiener filter, where a 
priori signal-to-noise ratio (SNR) and a posteriori target-to-non-
target-directional signal ratio (TNR) are estimated based on a deci-
sion-directed approach and a DOA-based approach, respectively. 
The estimated residual noise is finally incorporated as a control 
parameter into the adaptive filters in the AMC. The performance of 
the proposed AMC is evaluated by measuring the perceptual eval-
uation of speech quality (PESQ) scores and cepstral distortion in 
car noise environments with SNRs from 0 to 20 dB. Experimental 
results show that the proposed AMC performs better than the con-
ventional AMCs. 
 

Index Terms  Speech enhancement, array signal processing, 
adaptive beamformer, generalized sidelobe canceller, adaptation 
mode controller 
 

1. INTRODUCTION 
 
The generalized sidelobe canceller (GSC) is one of the most popu-
lar adaptive beamformers due to its structural simplicity and ease 
of implementation [1][2]. The GSC mainly consists of a fixed 
beamformer (FBF), blocking matrix (BM), and noise canceller 
(NC). The FBF provides a fixed sound beam in the target direction 
so that non-target-directional signals are attenuated. In contrast, the 
BM blocks the target-directional signal so that only non-target-
directional signals can pass through. The NC generates an en-
hanced target-directional signal from the FBF and BM output sig-
nals. However, the output signal processed by the BM includes a 
part of the target-directional signal, which is called residual target 
signal. Thus, the residual target signal can degrade the performance 
of the NC. To overcome such a problem, an adaptation mode con-
troller (AMC) has been used for the NC, where the filter adaptation 
is selectively performed depending on the target signal activity 
estimation [3].  

The AMC can be classified into two categories: hard-decision 
based scheme and soft- decision based one. The hard-decision 

AMC considers two cases: presence and absence of the target sig-
nal in each observed frame signal [3]. On the other hand, a soft-
decision AMC provides probabilistic values ranging from zero to 
one for the presence of the target signal to control the adaption 
mode. It has been reported in [4][5] that a soft-decision AMC per-
formed better than a hard-decision AMC. In fact, a hard- or a soft-
decision AMC can be used to estimate the residual noise compo-
nents of a GSC output, which is used in the adaptive algorithm of 
the NC. Thus, the reliability of the adaptive weight is strongly 
dependent on the estimate of the residual noise of the GSC output, 
which is explained in detail in Section 2. 

In this paper, we propose a new AMC driven by the residual 
noise estimate of a GSC output. In particular, we only consider the 
adaptation mode in the NC. Note that because an AMC aims to 
minimize the target-signal cancellation of a GSC output, originat-
ing from the target-signal leakage of the BM, the extent to which 
the noise reduction performance of an AMC can be improved is 
limited. While several techniques for the performance improve-
ment of noise reduction have been introduced in [6][7], we only 
consider the performance for the adaptation mode of the AMC. 

This paper is organized as follows. Following this introduction, 
in Section 2, we review the conventional AMCs for GSCs from the 
viewpoint of the residual noise of a GSC output. In Section 3, we 
describe the overall procedure of the GSC with the proposed AMC, 
where the estimation process of the residual noise of a GSC output 
is explored. Section 4 describes the target-speech enhancement 
experiments performed using 3-channel audio signals recorded in 
car noise environments. The performance of the proposed AMC is 
evaluated by measuring the perceptual evaluation of the speech 
quality (PESQ) scores and cepstral distortion. Finally, we summa-
rize our findings in Section 5. 
 

2. BEAMFORMER-BASED MULTI-CHANNEL 
SPEECH ENHANCEMENT 

 
In this section, a beamformer-based multi-channel speech en-
hancement system is briefly reviewed and a conventional AMC is 
introduced. To begin with, let ),(kT  ),(kE  and )(kY  be

 
target 

speech, residual noise, and GSC output
 
at the k-th frequency bin

)1,,1,0( Kk  and -th frame ).,1,0(  Then, 

.)()()( kkk ETY                         

   

(1) 
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Next, the FBF output )(kB  
is defined as a mixture of the target 

speech )(kT  
and the non-target noise )(kN  as  

.)()()( kkk NTB                              

   

(2) 

Let )(kw  and )(,kmZ  denote the adaptive weights in the NC and 

the BM output of the m-th channel, respectively. Then, the GSC 
output estimate )(kY  is obtained as  

),()()( kkk RBY

                         

(3) 

where 
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1
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In Eq. (4), )(,kmw  is usually updated by minimizing )(kY  
using 

a normalized least mean square (NLMS) algorithm as 
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where w  
is the step size. In Eq. (5), because the weight )(,kmw

 
is updated by minimizing )()()( kkk ETY  without distortion 

of ),(kT  )(kY  can also be replaced with ),(kE  i.e., 
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Let )(kG  be a productive value ranging from zero to one ac-

cording to the AMC strategy, which is applied to adapting the 
NLMS algorithm in Eq. (5). Therefore, we have 
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where )(kG  
is a binary value, i.e., 0)(kG  

or ,1)(kG  in the 

target signal absence or presence interval, respectively, according 
to the hard decision AMC strategy [3][8][9]. In fact, )(kG  corre-

sponds to a target signal presence probability, according to the 
soft-decision AMC strategy [4][5]. Here, when )(kV  is defined as 

the GSC output weighted by the probability of the target signal, i.e., 
,)(1)()( kkk GYV  )(kV  becomes the approximate of the 

residual noise component ).(kE  Thus, the adaptation mode con-

trol by AMC is linked to the estimate of the residual noise ).(kE  

In other words, the reliability of the adaptive weight )(,kmw  is 

strongly dependent on the estimate of ).(kE  

 
3. PROPOSED AMC 

 
Let )(,kmX  be a spectral component of the m-th channel input 

signal at the k-th frequency bin )1,,1,0( Kk  and -th frame.  
Fig. 1 shows a block diagram of a GSC with the proposed AMC. 
First, the a posteriori target-to-non-target signal ratio (TNR) )(~

k  

is computed from the phase differences among multiple signals. 
Then, )(~

k  
and the FBF output )(kB  are used to design a Wie-

ner filter in the frequency domain, which also includes a statistical 

voice activity detector (VAD) [10] by using ).(kB  The designed 

Wiener filter is then used to estimate the residual noise compo-

nents )(kE
 
of the GSC output ).(kY  Finally, )(kE  is used as 

the adaptation control parameter for the AMC in the NC. 
 
3.1. Adaptation mode control with known residual noise 
 
The residual noise )(kE  of the GSC output )(kY  is represented 

as the difference between )(kN  
and )(kR  from Eqs. (1), (2), and 

(3). That is,  

),()()( kkk RNE                                (8) 

where )(kR  is determined by )(,kmw
 
and )(,kmZ  as described in 

Eq. (4), thus the residual noise estimate )(kE  is dependent on the 

non-target noise estimate )(kN  of the FBF output ).(kB  

Fig. 2 compares the PESQ scores and cepstral distortion of the 
GSCs with the hard and soft decision AMCs. In particular, for the 
hard decision AMC, the target signal is detected in each frequency 
bin by using the target clean signal. On the other hand, for the soft 
decision AMC, the pure noise component )(kN of the FBF output 

is employed in Eqs. (6) and (8). As shown in Fig. 2, for both PESQ 
scores and cepstral distortion and for all input signal-to-noise ratios 

Fig.1. Block diagram of a GSC with the proposed soft-decision
AMC based on a residual non-target noise estimate.  

 
(a)                                              (b) 

Fig.2. Performance comparison of (a) PESQ scores and (b)
cepstral distortion (dB) of hard- and soft-decision AMC ap-
proaches with known residual noise. 
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(SNRs), the soft decision AMC performs better than the binary 
decision AMC. 

 
3.2 Adaptation mode control with unknown residual noise  
 

In order to optimize the adaptation mode in Eq. (6), )(kN  should 

be first estimated, because it is necessary for obtaining the residual 

noise estimate ).()()( kkk RNE  Here, a short-time Fourier 

transform (STFT) based Wiener filter is used to estimate ).(kN  

The statistical model-based VAD is employed to provide the target 
signal activity information, where the VAD is driven by two situa-
tions )()(:0 kk NBH  and )(:1 kBH ).()( kk NT  The non-

target noise spectral variance )(,kN  is estimated by a recursive 

procedure executed only when 0H  is determined to be true. In 

other words, we have 

,|)(|)1()1()( 2
,, kNkNNkN B          

    
(9) 

where N  
is a smoothing parameter. Then, the a priori SNR esti-

mate )(k  and a posteriori
 )(k  are obtained by the decision-

directed (DD) approach [11]. Thus, we have 
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Because recursive smoothing approaches in the DD estimator re-
ly on a stationary condition between successive spectral magni-
tudes, their performance is limited when noise is non-stationary. In 
order to overcome the performance limitation of the conventional 
DD approach, a DOA-based a posteriori TNR in [5] is employed 
for the a priori SNR estimation. That is, if the target-directional 

enhanced and rejected powers are denoted as 2
, |)(

~
| kmeT

 
and 

|,)(
~

| ,kmrT  respectively, we can compute the DOA-based TNR 

)(,km  as 
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where m refers to the counterpart channel of a reference channel 
among a pair of channels and )(,km  is the phase difference be-

tween the m-channel and reference-channel signals. Then, the a 
posteriori TNR )(~

k  
is estimated as the average value of )(,km  

over
 

),3,2( Mm  from all microphone pairs including the ref-

erence channel. That is, we have 

.)(
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1
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                             (13) 

Let ))(~( k  be an amplitude reduction function for non-

stationary noise residual components, which are not estimated by 
the DD approach. The non-stationary noise reduced version of

|)(| kT ,
 

)),(~(|)(||)(| kkk TT  leads to the enhanced a priori 

SNR )(k  via non-stationary noise, which is denoted as 
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where ))(~( k  can be estimated using the Wiener-Hoff equation 

with )(~
k  as  

,
))(/1(1

1
)(~

k
k     

                      

(15)

 
where  is a control parameter. 

Fig. 3 shows the behavior of the overall SNR estimated from the 
DOA-based TNR with the DD approach for noisy speech. It is 
shown from Fig. 3(a) that the SNR estimated by the proposed ap-
proach is significantly better matched with the true SNR than the 
conventional DD does. 

Next, the Wiener filter coefficient )(kF  is obtained to estimate 

the non-target noise )(kN  
of the FBF output as  

.
1)(

)(
1)(

k

k
kF                               (16) 

Then, the residual noise component )(kE  of the GSC output is 

estimated using the following rules: 

),()()(:0 kkk RBEH                        (17a) 

).()()()(:1 kkkk RFBEH

           

(17b) 

Finally, the adaptation algorithm driven by residual noise is rep-
resented as  

)(
||)(||
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,, k
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ww .           (18) 

 
                                                    (a)                                                 

 
(b) 

Fig.3. Illustration of (a) SNR estimated by conventional DD and 
proposed approach in conjunction with (b) a noisy speech having 
the SNR of 5 dB. 
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4. PERFORMANCE EVALUATION 

 
A triple-microphone array database with a 4-cm equivalent space 
was used in a car noise environment. The detail description was 
already described in [12]. The desired speech signal was played 
from an acoustic speaker mounted below the headrest of the driv-
er s seat, and background music was played from the car audio 
system in drive mode with an average velocity ranging from 60 to 
80 km/h. Ten speech (five males and five females) and ten music 
audio signals were separately recorded at a sampling rate of 16 
kHz and artificially mixed with different SNRs ranging from 0 to 
20 dB in a step of 5 dB. Subsequently, 100 noisy speech signals 
were prepared as a test database for each SNR. The test signals 
were segmented by a half overlapping rectangular window whose 
length was 32 ms, and the GSC processed signal was synthesized 
by a cosine window. In this experiment, the frame size was set to 
512 samples, which corresponded to 32 ms. In addition, 

95.0N  
in Eq. (9), 8.0DD  in Eq. (10), 10  in Eq. (15), 

and
 

06.0w  in Eq. (18). 

In order to evaluate the performance of the proposed AMC, we 
used two objective quality measures such as the PESQ [13] score 
and cepstral distortion [14]. Table 1 compares the PESQ scores of 
speech signals processed by the GSCs with different AMCs. In 
particular, the performance of the Wiener filter alone was present-
ed, which was also used to estimate the residual noise components 
of the proposed AMC. All the AMC approaches in [3], [8], [9], and 
[5] were used for the adaptation process in the NC to carry out a 
fair comparison. It was shown from Table 1 that compared to other 
AMC approaches, the proposed AMC achieved the highest scores 
for all the input SNRs. On one hand, Table 2 compares the cepstral 
distortion of speech signals processed by the GSCs with different 
AMCs. It was also shown from the table that the proposed AMC 
provided the lowest distortion for all the input SNRs among all the 
AMCs. Thus, it can be concluded here that the GSC with the pro-
posed AMC outperformed those with conventional AMCs for all 
the input SNRs in terms of PESQ score and cepstral distortion. 

5. CONCLUSION 
 
In this paper, we proposed a new AMC for GSCs. The proposed 
AMC could provide an optimal adaptation mode by exploring the 
characteristics of the residual noise in a GSC output. In other 
words, the residual noise component of the GSC output was esti-
mated using a Wiener filter in order to optimize the AMC. Finally, 
the residual noise component was employed as an adaptation pa-
rameter in the NC. It was shown from performance comparison 
using PESQ score and cepstral distortion that the GSC with the 
proposed AMC outperformed those with conventional AMCs. 
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Table 1 
Comparison of PESQ scores according to different AMCs  

SNR 
(dB) 

No Wiener [3] [8] [9] [5] Proposed 

20 3.26 3.49 3.39 3.52 3.47 3.42 3.58 
15 2.91 3.23 3.14 3.24 3.18 3.19 3.24 

10 2.63 2.87 2.88 2.93 2.87 2.92 2.94 

5 2.37 2.52 2.62 2.64 2.60 2.65 2.66 

0 2.0 2.22 2.38 2.38 2.35 2.39 2.39 

Avg 2.63 2.87 2.88 2.94 2.90 2.92 2.96 

 

Table 2 
Comparison of cepstral distortion according to different AMCs 

SNR 
(dB) 

No Wiener [3] [8] [9] [5] Proposed 

20 1.94 2.01 2.00 1.76 1.79 1.91 1.32 
15 2.46 2.52 2.31 2.07 2.12 2.18 1.74 

10 3.19 3.29 2.80 2.59 2.65 2.64 2.33 

5 4.04 4.18 3.40 3.26 3.30 3.26 3.08 

0 4.98 5.11 4.12 4.05 4.07 4.02 3.93 

Avg 3.32 3.42 2.92 2.74 2.79 2.80 2.48 
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