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ABSTRACT

In this paper, we study the effect of the design parameters of a single-
channel reverberation suppression algorithm on reverberation-robust
speech recognition. At the same time, reverberation compensation at
the speech recognizer is investigated. The analysis reveals that it is
highly beneficial to attenuate only the reverberation tail after approx-
imately 50ms while coping with the early reflections and residual
late-reverberation by training the recognizer on moderately reverber-
ant data. It will be shown that the overall system at its optimum con-
figuration yields a very promising recognition performance even in
strongly reverberant environments. Since the reverberation suppres-
sion algorithm is evidenced to significantly reduce the dependency
on the training data, it allows for a very efficient training of acoustic
models that are suitable for a wide range of reverberation conditions.
Finally, experiments with an “ideal” reverberation suppression algo-
rithm are carried out to cross-check the inferred guidelines.

Index Terms— Signal enhancement, reverberation suppression,
reverberation robustness, automatic speech recognition

1. INTRODUCTION

For many years, automatic speech recognition (ASR) has been suc-
cessfully deployed in everyday-life applications, such as dictation
systems and telephone hotlines. The main restriction so far is the
necessity of close-talking microphones in order to achieve reliable
recognition performance. There are, however, numerous scenar-
ios where the employment of distant-talking microphones being in-
stalled at fixed positions in the environment would be much more
convenient. Since in such scenarios, the speaker is in general several
meters away from the microphone, the received signal is distorted by
additive noise and reverberation. These effects significantly reduce
the ASR performance if no countermeasures are taken.

Focusing on increasing the robustness of an ASR system to re-
verberation, three classes of algorithms can be distinguished. Firstly,
signal enhancement techniques like beamforming and dereverbera-
tion can be applied to the input signals. The latter ones can further
be categorized into reverberation cancellation and reverberation sup-
pression approaches [1]. A second class of methods address rever-
beration only in the feature domain, either by compensating [2] or
by explicitly modeling reverberation [3]. Finally, one could aim for
directly training the acoustic model of the recognizer to reverberant
data.

The authors would like to thank the Deutsche Forschungsgemeinschaft
(DFG) for supporting this work (contract number KE 890/4-1).

†A joint institution of the University of Erlangen-Nuremberg and Fraun-
hofer IIS.

So far, dereverberation and ASR are often considered and opti-
mized separately. Only little effort has been devoted to improving
the integration of both components into one system. Combining sig-
nal enhancement and ASR can, however, be a very promising way
for robust ASR in reverberant environments, as shown in [4].

In [5], the effect of ideal late-reverberation suppression on ASR
performance was analyzed by varying the shape of room impulse
responses (RIRs) based on two design parameters T and A. These
parameters described that the reflections arriving with a delay greater
than T (seconds) after the direct sound are attenuated by a factor A.

In this study, we extend [5] by investigating the blind rever-
beration suppression algorithm proposed in [6], which has similar
design parameters, in order to derive an optimum adjustment to a
connected-digit recognition task. Moreover, different ways of cop-
ing with reverberation at the ASR back-end are considered. We will
exemplify that the best results are achieved if only the late reverber-
ation after about 50ms is attenuated by the investigated algorithm
while the early part is compensated by cepstral mean normalization
(CMN) [7] in combination with a recognizer trained on moderately
reverberant data. The established results are verified with an “ideal”
reverberation suppression algorithm that operates on the RIRs before
their convolution with the digit data.

This paper is structured as follows: In Section 2, the consid-
ered blind and “ideal” reverberation suppression algorithms are de-
scribed. Section 3 presents the experimental setup while the exper-
imental results are discussed in Section 4. Finally, conclusions are
drawn in Section 5.

2. REVERBERATION SUPPRESSION

In this section, we introduce the blind reverberation suppression al-
gorithm as well as its “ideal” counterpart. In both cases, the design
parameters we will focus on are - similarly to [5] - T and A. The
specific role of these parameters in the context of their algorithms
will be outlined in the following.

The reverberant signals that will be considered in the ASR ex-
periments result from the convolution of anechoic speech signals
and causal room impulse responses. In the short-time Fourier trans-
form (STFT) domain, the reverberant spectral coefficients Z(m, k),
where m denotes the time-frame index and k the discrete frequency
index, can be written as [6, 8]

Z(m, k) = Ze(m,k) + Z�(m,k),

where

Ze(m, k) =

Ne−1∑
m′=0

H(m′, k)S(m−m′, k)
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denotes the early spectral speech component,

Z�(m,k) =

∞∑
m′=Ne

H(m′, k)S(m−m′, k)

denotes the late reverberant spectral speech component, and H(m,k)
represents the RIR in the STFT domain. The parameter Ne, Ne ≥ 1,
defines which portion of the RIR is considered as late reverberation.
Specifically, it is the time (measured relative to the arrival time of
the direct sound) at which we assume that the late reverberation
starts. Denoting the number of samples between successive analysis
frames by R and the sampling frequency in Hz by fs, we have

T = Ne R/fs.

2.1. Blind reverberation suppression

Although S(m, k) and H(m,k) are unknown in practice, an es-
timate of Ze(m, k) can be obtained using spectral enhancement
methods given an estimate of the late reverberant spectral variance
λ�(m, k) = E

{
|Z�(m,k)|2

}
, where E{·} denotes the mathemati-

cal expectation. Using a statistical reverberation model that depends
on the direct-to-reverberation ratio (DRR) and the reverberation time
of the RIR, we can obtain an estimate of λ�(m,k) using the fact
that [6]

λ�(m, k) = e−2αR(Ne−1) λr(m−Ne + 1, k),

where

λr(m, k) = [1− κ] e−2αR λr(m− 1, k)

+ κ e−2αR λz(m− 1, k),

λz(m, k) = E{|Z(m, k)|2},

and κ, 0 < κ ≤ 1, is a smoothing parameter related to the DRR as
shown in [6]. Furthermore,

α =
ln(10)

T60 fs

is related to the reverberation time T60.
In this study, we have used the log-spectral amplitude estima-

tor [9] to estimate the early speech component Ze(m,k). The corre-
sponding gain function is given by

G(m, k) =
ξ(m,k)

1 + ξ(m,k)
exp

(
1

2

∫
∞

ζ(m,k)

e−t

t
dt

)
,

where

ξ(m, k) =
λz(m, k)

λ�(m,k)
,

denotes the a priori signal-to-reverberation ratio and

ζ(m, k) =
ξ(m, k)

1 + ξ(m,k)

|X(m, k)|2

λ�(m, k)
.

Using A−1 as a lower bound for the gain G(m, k) alleviates
speech distortions but also limits the amount of late reverberation
that can be reduced. An estimate of the early spectral speech com-
ponent Ze(m, k) can now be obtained by applying the constrained
gain function to the reverberant spectral coefficient Z(m, k), i.e.,

Ẑe(m,k) = max
[
G(m,k), A−1

]
Z(m, k).

Finally, given the estimated spectral component Ẑe(m,k) the early
speech component can be obtained using the inverse STFT.

2.2. Ideal reverberation suppression

In one part of our analysis, we will simulate “ideal” suppression of
the late reverberant component Z�(m, k), where “ideal” implies that
the speech signal is not distorted. Consequently, an upper bound
for the speech recognition performance that can be achieved with
dereverberation approaches attenuating only the late reverberation.
Given S(m, k) and H(m,k), we can compute the “ideally” dere-
verberated spectral coefficients using

Zi(m,k) = Ze(m, k) + A−1 · Z�(m,k),

where A, 0 ≤ A ≤ 1, is the above-mentioned real-valued parameter
that allows us to control the amount of reverberation reduction. The
time-domain signal is then obtained by computing the inverse STFT
of Zi(m, k). It is worthwhile noting that such an “ideal” reverbera-
tion suppression algorithm cannot be implemented in practice since
S(m, k) and H(m,k) are not available.

3. ANALYSIS CONDITIONS

ASR experiments with a connected-digit recognition task are car-
ried out to find guidelines for setting the design parameters T and
A along with choosing a suitable speech recognizer. This task is
chosen for evaluation since the probability of the current digit can
be assumed to be independent of the preceding digits so that the
recognition rate is solely determined by the degree the processed
data match the recognizer’s acoustic model.

For recognition, we employed the ASR toolkit HTK [10] with
word-level HMMs using three Gaussian densities per state. From
the input signals, features consisting of 13 mel-frequency cepstral
coefficients (MFCCs), including the 0’th, as well as 13 delta and 13
acceleration coefficients are derived. Furthermore, CMN is applied.
The sampling rate is 20 kHz, and the analysis frame length used for
the feature extraction is set to 25ms at a frame shift of 10ms.

To obtain the reverberant test data, the clean-speech TI digits
data are convolved with different RIRs measured at different loud-
speaker and microphone positions in four rooms with the character-
istics given in Table 1. A strict separation of training and test data
is maintained in all experiments both for speech and RIRs. Each
test utterance is convolved with an RIR selected randomly from a
number of measured RIRs in order to simulate changes of the RIR
during the test. Unless stated otherwise, the test data has been pro-
cessed with the blind reverberation suppression algorithm described
in Section 2.1, where the averaged T60 values from Table 1 are as-
sumed to be known.

In the following, we distinguish three differently trained recog-
nizers:

1.) The “clean recognizer” is trained on clean, i.e., anechoic,
data.

2.) The “moderately reverberant recognizer” is trained on clean
data that have been convolved with RIRs from the least rever-
berant room R1.

3.) The “dereverberated recognizer” is trained on clean data that
have been convolved with RIRs from the least reverberant
room R1 and preprocessed by the blind reverberation sup-
pression algorithm according to Section 2.1 with (A, T ) =
(5 dB, 64ms).
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Room Type T60 d DRR
R1 lab 300 ms 2.0 m + 4 dB
R2 conf. room 600 ms 2.0 m + 0.5 dB
R3 conf. room 700 ms 2.0 m - 0.5 dB
R4 lecture room 900 ms 4.0 m - 4 dB

Table 1. Summary of room characteristics: d denotes the distance
between speaker and microphone.
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Fig. 1. Word accuracy for dereverberated test data for all rooms and
the “clean recognizer”.

4. ANALYSIS RESULTS

4.1. The proper aggressiveness

Fig. 1 shows the word accuracy over T with A as parameter when
applying the blind reverberation suppression algorithm to the test
data while using the “clean recognizer”. For all rooms, the curves
indicate the same trend: The word accuracy has a pronounced global
maximum around T ≈ 50ms. Moreover, an attenuation of about
A = 10dB seems to be most effective. We deduce from these results
that a too strong suppression A and values of T � 50ms distort
the early speech components. As we will see in Section 4.3, those
restrictions can be very well compensated by the ASR back-end. On
the other hand, considering the optimum configuration (A, T ) ≈
(10 dB, 50ms), the algorithm shows a very promising performance,
e.g., a relative reduction in word error rate of 47% compared to the
baseline in the most reverberant room R4.

4.2. The role of processing artifacts

To obtain deeper insights into the behavior of this algorithm, we em-
ployed the “dereverberated recognizer”. As can be seen in Fig. 2, this
procedure of adapting the recognizer to the processing characteris-
tics strongly improves the recognition results. Consider, e.g., room
R4: The word error rate achieved at (A, T ) = (10 dB, 50ms) is
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Fig. 2. Word accuracy for dereverberated test data for all rooms and
the “dereverberated recognizer”.

reduced by 77% compared to the same configuration in Fig. 1. Con-
sidering that the ”dereverberated recognizer” is trained on processed
data of a single room, namely room R1, the consistent improvement
over all rooms indicates that the blind reverberation suppression al-
gorithm significantly reduces the room dependency from the training
data. Thus, the reverberation suppression allows for a very efficient
training of acoustic models that are suitable for a wide range of re-
verberation conditions.

To investigate the question how strongly the processed data are
affected in terms of artifacts, we tested the processed data on the
“moderately reverberant recognizer”. The results in Fig. 3 show an
almost identical behavior for A ≤ 15 dB and T ≈ 50ms compared
to Fig. 2, which leads to the conclusion that the algorithm does not
introduce considerable artifacts for this configuration. This has also
been confirmed by informal listening tests.

Note that Fig. 3 shows slightly better results than Fig. 2 for the
more reverberant test cases A ≤ 5 dB since the data used to train the
“moderately reverberant recognizer” in Fig. 3 are more reverberant
than the processed training data used for the ”dereverberated recog-
nizer” in Fig. 2. For A ≥ 10 dB, the test data are sufficiently well
dereverberated to better fit the acoustic model underlying Fig. 2.

4.3. The proper balance between preprocessing and back-end

The results above suggest to divide the task of reverberation compen-
sation between preprocessing and back-end. Preprocessing appears
to be most effective when “focusing” on the late reverberation start-
ing at T ≈ 50ms. At the same time, the ASR back-end should be
trained on slightly reverberant data since the early reflections can be
very well modeled by HMMs in combination with CMN.

To cross-check this hypothesis, we applied the “ideal” reverber-
ation suppression algorithm to the test data of the most reverberant
room R4 for different T and A. Fig. 4 shows the results for a) the
“clean” and b) the “moderately reverberant recognizer”. Especially
for low attenuation of A ≤ 20 dB, it is obviously of significant ad-
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vantage to keep the early reflections, i.e., T ≈ 50ms, and use a rec-
ognizer trained on slightly reverberant data. In contrast, attenuating
even the early reflections while employing the “clean recognizer” is
less effective.

4.4. The role of the analysis frame length

For all the above experiments, the frame length used for feature ex-
traction has been set to 25ms with a frame shift of 40%. In the final
experiment, we varied the frame length for the training and test data
from 15ms to 35ms while keeping the frame shift at 40% of the
corresponding frame length. The results for room R4 are depicted in
Fig. 5 for a) the “clean” b) the “moderately reverberant recognizer”.
For the case of the “clean recognizer”, a longer analysis frame brings
a slight increase in word accuracy, whereas a shorter frame remark-
ably degrades the performance. This might be explained by the fact
that CMN as an intra-frame method can better compensate for re-
verberation with increasing frame length. Considering the “moder-
ately reverberant recognizer”, we see that the commonly used frame
length of 25ms is well justified. The claim that the early reflections
before some T ≈ 50ms should be kept seems to hold independently
of the frame length.

5. SUMMARY AND CONCLUSIONS

The optimum configuration of the blind reverberation suppression
algorithm proposed in [6] was investigated in this contribution for
the recognition of reverberated speech signals. The design param-
eters T and A describe that the reflections arriving with a delay
greater than T after the direct sound are attenuated by a maximum
level of A. The results show that it is preferable to approximately
set (A, T ) = (10 dB, 50ms), independently of the analysis frame
length used for feature extraction. Experiments with both the blind
and the “ideal” reverberation suppression algorithm confirm that it is
most effective to compensate for the early reflections by employing
a recognizer trained on moderately reverberant or processed data.
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Fig. 3. Word accuracy for dereverberated test data for all rooms and
the “moderately reverberant recognizer”.
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