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Abstract
Enhancing non-stationary signals is crucial for many applica-
tions, such as speech recognition, audio communication, and
bio-signals analysis. The present paper investigates a novel pro-
cessing structure (alternative to the overlap-add scheme), based
on an interpolated zero-phase FIR filtering. The proposed struc-
ture accounts for slow signal non-stationarity, and also natively
supports time and frequency smoothing. Applied for speech
denoising and compared to the usual overlap-add framework,
the proposed structure has shown promising results in terms of
quality, perception, and recognition performances.
Index Terms: speech enhancement, segmentation, linear inter-
polation, smoothing, Wiener filter.

1. Introduction
Processing time-varying (non-stationary) signals is a challeng-
ing task, both from theoretical and practical prespectives. In-
deed, most of the usual concepts/models introduced for station-
ary signals cannot be straightforwardly extended to the non-
stationary context. Let’s consider, as an example, the basic con-
cept of ’frequency’. For sinusoidal signals, this quantity is well
defined. It could be unambiguously extended for stationary sig-
nals (as any stationary signal can be represented as a weighted
sum of sins and cosines with particular frequencies, amplitudes
and phases) [1]. However, for non-stationary signals, the sinu-
soidal decomposition is no-longer unique, which arises some
identification issues and makes the physical interpretation am-
biguous [1, 2, 3]. From a practical prespective, even if these
ambiguities were alleviated, estimating the model parameters is
a challenging task, as the helpful ergodicity assumption is no-
longer valid.

Within the group of non-stationary signals, the subclass of
the slowly-stationary signals is of particular interest, as it in-
cludes some useful signals such as speech, music, and large
range of bio-signals. The statistical variations of such signals
is so slow that they can be assumed locally constant/stationary;
although globally, they are time-varying.
To process such signals, a three step scheme is typically used:

1. Segment the signal into (locally) stationary blocks

2. Process (individually) each block, by usual stationary
tools

3. Synthesize the processed blocks

In all the stages, a key ingredient is the selection of the segmen-
tation window. A good choice should ensure:

• Effective non-stationary to locally-stationary decompo-
sition (segmentation stage)

• Good linear to circular convolution approximation (pro-
cessing stage)

• Smooth (alleviate discontinuity) signal resynthesis (syn-
thesis stage)

With this respect it has been observed that using a smooth win-
dow (e.g. Hanning window) is beneficial, and that both time
and frequency smoothing are advantageous. On the other hand,
full understanding of the effect of time-windowing is still an
open issue and is triggering the interest of the signal processing
research communities [4, 5], not only for theoretical challenges
but also for an effective design of the processing schemes.

In the present paper, the frame-by-frame analysis and syn-
thesis structure is analyzed, and an alternative processing struc-
tures are investigated. The remainder of this paper is organized
as follows. The problem statement is introduced in Section 2.
Section 3 analyses time-segmentation for both frequency-flat
and (smooth) frequency-selective processing. Application to
Wiener filter design for speech enhancement is considered in
Section 4. Finally, a discussion and concluding remarks are
provided in Section 5.

2. Problem Statement
We consider a standard frame-by-frame processing scheme
(Figure 1). The received signal y(n) (contaminated by noise,
reverberation, etc) is first segmented into overlapping frames:

y(k)(n) = w(k)(n) y(n)

= w(n − kD) y(n) (1)

D characterizes the window shift, and w(n) is a function with
a finite support (non-zeros elements), i.e.,

w(n) = 0 n /∈ [0..B − 1] (2)

where B denotes the window length.

Figure 1: Frame-by-Frame processing scheme.

The segmented blocks are individually processed by the (piece-
wise constant) filters g(k)(q):

x(k)(n) = g(k) ∗ y(k)(n) (3)

where (. ∗ .) represents the convolution operator.
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Finally, the enhanced signal is synthesized

x(n) =
X

k

x(k)(n) (4)

To ensure signal preservation (when no processing is per-
formed), the segmentation parameters (shape and shift) satisfyX

k

w(k)(n) =
X

k

w(n − kD) = 1 (5)

Notations: Upper- and lower-case boldface letters denote
matrices and vectors, respectively. Upper- and lower-case nor-
mal letter represent scalar constant and processes, respectively.
Either as a subscript, superscript or argument n, t and k refer
respectively to the time, time-lag, and frame indexes. f and ν
refer respectively to the frequency and frequency-band indexes.

3. Analysis and Interpretation of
Segmented Processing

In frequency domain, the enhanced signal can be expressed as:

x(f) =
X

k

g(k)(f) y(k)(f)

y(k)(f) = w(k)(f) y(f)

=
h
e−2jπkfD/Bw(f)

i
∗ y(f) f=1:B (6)

Typically, the segmentation window length and shift are linearly
related (i.e. ∃K ∈ IN, B = KD). Only K frames get involved
in the overlap-add synthesis (i.e. only K entries of the infinite
sum are non-zero).

Assuming a frequency-flat processing scheme (i.e., g(k)(f)
is frequency independent), the synthesized signal is given by

x(f) =

"X
k

g(k) w(k)(f)

#
∗ y(f)

=

" X
k

e−2jπfk/Kg(k)

!
w(f)

#
| {z }

g(f)

∗ y(f) (7)

The frame-by-frame enhancement could be then interpreted in
terms of a (slowly-varying) amplitude modulation. The modu-
lating signal g(n) is generated by interpolating the (downsam-

pled) process
n

g(k)
o

k
with the smooth spline function w(n)

(see appendix A for further details on the interpretation of the
interpolation operator in terms of linear filtering).

More generally, the gain function is often designed to be
slowly-varying with frequency. Several studies reported that
smoothing the gain function over frequency reduces musical
noise and enhances auditory results. The smoothing was rec-
ommended for both communication [6] and speech recogni-
tion [7] applications. With this respect, filter-bank provides a
flexible and effective structure to implement the gain smooth-
ing [8]. The input signal y(n) is passed through a bank of M

analysis filters
n

h(ν)(q)
o

ν=1:M
, each of which preserves a fre-

quency band of uniform bandwidth . An enhancement gain filter
g(ν)(q) is next applied in each frequency band ν. Given that en-
hancement is slowly varying over frequency, the gain filter (at
each subband) can be assumed flat and expressed in terms of a
slowly-varying amplitude modulation, i.e.,

g(ν)(n) = g
(ν)
↓ ∗ w(n) (8)

Finally, the subbands are combined by a set of synthesis filtersn
f (ν)(q)

o
ν=1:M

to form the reconstructed signal:

x(n) =
X

μ

x(ν)(n)

x(ν)(n) = f (ν) ∗
h
g(ν)(n) ·

“
h(ν) ∗ y(n)

”i
(9)

≈ g(ν)(n) ·
“
f (ν) ∗ h(ν) ∗ y(n)

”
| {z }

y(ν)(n)

(10)

The approximation (10) assumes that the gain filter g(ν)(n)
bandwidth is narrow compared to the subband bandwidth.
Thus, one may interpret the (smooth) segmented processing in
terms of (frequency-selective) amplitude modulation. The am-
plitude modulating filter is constructed by interpolating the fil-
ter coefficients (at different subbands) with the spline window
w(n). The frequency-selective AM modulation was also intro-
duced for audio signal modeling. It has been shown to be linked
to the way sounds are produced, and effective to express a vari-
ety of musical instruments [9, 10], and speech signals [11]. The
remainder of this paper investigates an alternative approach,
where the time-domain coefficients of the gain filters are inter-
polated (rather than frequency-domain coefficients). Explicitly,
the enhancement gain filters are

1. estimated (assuming stationarity) at each frame

g(k)(q) =
X

t

g(k)(t)q−t
(11)

2. interpolated over frames

gn(t) =
X

k

g(k)(t)w(n − kD) (12)

3. applied in time-domain:

x(n) =
X

t

gn(t)y(n − t) (13)

Please note that the proposed structure is independent from the
design of the gain filters g(k)(q). Moreover, the order of the
gain filters is often selected small1 (compared to the window
size B). The additional computational complexity (due to in-
terpolation and convolution) does not alter the overall computa-
tional performance.

4. Wiener Filter Design for Speech
Enhancement

To investigate and compare the segmented and interpolated en-
hancement schemes, we consider a signal in noise problem

y(n) = s(n) + v(n) (14)

where s(n) is the clean signal, and v(n) is an additive Gaussian
noise (zero-mean and with known spectral density).
If the clean signal is Gaussian stationary, it can be optimally
recovered (i.e. achieving the minimum Mean Squared Error
(MSE)) using a Wiener filter

g(f) =
Syy(f) − Svv(f)

Syy(f)
(15)

1Limiting the order of the gain filter leads to a smoothing over the
gain frequency components, which has been shown advantageous both
audio quality and recognition accuracy
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For speech inputs (locally stationary), Wiener filtering can be
applied on a frame-by-frame structure: on each frame, a local
Wiener filter is designed (using the local statistics) and applied
(in frequency domain). Alternatively, an amplitude modulating
filter could be generated (by interpolating the Wiener filter taps
over frames), then applied (in time-domain). We constrain the
amplitude modulating filter to be FIR and zero-phase:

gn(−t) = gn(t) − L ≤ t ≤ L

gn(t) = 0 otherwise

L is the order of the enhancement FIR filter. The estimation
of the zero-phase FIR local Wiener filters is depicted in ap-
pendix B.

To assess the performance of the schemes described above,
we consider the output SNR:

SNRout =

P
n s2(n)P

n(x − s)2(n)
(16)

We consider a speech signal sampled at 8 kHz contaminated by
an additive white noise (SNR = 0dB). The noise statistics are
assumed to be known. The received signal is segmented using
a Hanning window of length B and 50% overlap (K = 2). If our
input is stationary and B → ∞, the frequency-domain imple-
mentation of the Wiener filter maximizes the SNR‘out. How-
ever for speech signals, B set a tradeoff between modeling the
speech non-stationarity and estimating the signal statistics.

Figure 2: Optimal FIR order L (left) and its corresponding
SNRout function of the segmentation window (B).

Figure 2 shows that the time-domain FIR Wiener (TD Wiener)
consistently outperforms the frequency-domain implementation
(FD Wiener). The FIR implementation achieves better tradeoff
by discarding the noisy covariance estimates (ry(t), t > 2L).
The filter order set a tradeoff between the modeling error (due
to FIR constraint) and the estimation error (due to second or-
der statistics estimation), which justify the observation that the
optimal order (leading to the best SNR improvement) increases
with the window length.

Next, we investigate the choice of the interpolation window.
We consider Bartlett and Hanning interpolating windows (Fig-
ure 3). Curves show that Bartlett smoothing is advantageous
only at very low sampling-rate (K=2). For K ≥ 4, Hanning
windowing produces better results. These observations are con-
sistent with studies reporting the outperformance of Hanning
segmentation, and could be explained by the fact that a smooth
window (with energy concentrated around the principal lobe)
reduces the interpolation error. The higher the sampling rate
(i.e., K), the wider the (allowed) bandwidth of the gain filter
variations, and the higher the side-effect of the secondary lobes
of the interpolating window.

The output SNR has straightforward interpretation; and it
can provide indications of the perceived audio quality in some

Figure 3: SNR improvement function of filter order for K = 4
(left) and K = 2 (rigth).

cases [12]. Unfortunately, the output SNR shows a limited cor-
relation with perceived speech quality. Therefore, we also con-
sider The ITU P.862 PESQ (Perceptual Evaluation of Speech
Quality [13, 14]) for speech quality assessment. Figure 4 plots
the SNR and the PESQ improvement (between the frequency
and time domain implementations) function of the shift factor
K = B/D. The FIR Wiener filters were interpolated using the
’usual’ linear interpolation (Bartlett window).

Figure 4: SNR and the PESQ improvement function of the shift
factor K = B/D.

One can observe that the constrained FIR implementation con-
sistently improves both the audio quality (SNRout), and per-
ception (PESQ). It becomes key in the high shift region (K=2).
The proposed scheme was also applied as pre-processing for
the DNS speech recognizer. The input signal was sampled at
11.025kHz, synthetically distorted by an additive white Gaus-
sian noise (SNRin = 20dB), and segmented using a Hamming
window (B = 1024 and K = 2). Table 1 shows that FIR
Wiener also enhances the recognition accuracy. However, par-
ticular attention should be paid to the selection of the interpola-
tion window.

Pre-Processing K = 2 K = 4 K = 8

Clean 86.52 86.95 86.63

FD Wiener 69.41 69.09 66.42

TD Wiener (Hanning) 66.20 65.78 65.56

TD Wiener (Bartlett) 77.97 77.01 78.93

Table 1: Speech in white noise: speech recognition rate (in %).

5. Concluding Remarks
In the present paper, we have interpreted the frame-by-
frame processing scheme in terms of (smooth) time-varying
frequency-selective modulation. We have proposed an alterna-
tive (smoothed) FIR Wiener filtering for speech enhancement
application. Simulations show that the proposed scheme may
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outperform the usual overlap-add structure in terms of speech
quality, perception and recognition.
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A. Linear Interpolation for Signal
Reconstruction

Mathematical interpolation focuses on the estimation of an unknown
value of a function f, defined on a regular grid N. If we restrict our con-
sideration to a linear case, the desired solution will take the following
general form:

f(x) =
X
n∈N

w(x, n)f(n) (17)

where f(x) is the unknown value , and w(x, n) is a given linear weight
function.
The linear weighting function must verify two properties:

• The interpolation of a constant function f(n) remains constant
( i.e.,

P
n∈N w(x, n) = 1)

• The interpolation at a given point n does not change the value
f(n) ( i.e., w(n, n) = 1)

In addition, one can verify that mathematical interpolation is equiv-
alent to filtering an impulse train carrying the signal sample with a
continuous-time filter:

f(x) =
X

n∈IN

w(x − n)f(n) (18)

where w(.) characterizes the filter impulse response.
For instance, the nearest-neighbor interpolation can be achieved by fil-
tering the signal using a rectangular window

w(x) =

j
1 for |x| < 1

2
0 otherwise

(19)

The linear interpolation can, also, be performed by filtering the sam-
pled signal with a continuous-time filter having a triangular (Bartlett)
window

w(x) =

j
1 − |x| for |x| < 1
0 otherwise

(20)

One can also use smoother windows to perform interpolation, such as
Hanning window (we can easily verify that the resulting interpolat-
ing weight function satisfy the two previous properties). The use of a
smooth window (with energy concentrated essentially on the principle
lobe) reduces the interpolation errors.

B. Zero-Phase FIR Wiener Filter
In order to derive the coefficients of the FIR Wiener filter, we consider a
signal y(n) being fed to a Wiener filter of order L and with coefficients
gt, t = −L, · · · , L. The zero-phase constraint is implemented via a
symmetric non-causal design, i.e.,

g−t = gt ∀t (21)

The output of the filter (denoted x(n)) is given by

x(n) =
LX

t=−L

gt y(n − t)

= g0y(n) +
LX

t=1

gt (y(n − t) + y(n + t)) (22)

The Wiener filter is designed so as to minimize the mean square error,
i.e,

gt = arg min E
˘
e2(n)

¯
(23)

where E {.} denote the expectation operator, and e(n) = x(n)− s(n)
is the residual error.

Setting the gradient to zero (
∂

∂gt
E

˘
e2(n)

¯
= 0) leads to the L + 1

linear system2
666664

P(0, 0) P(0, 1) · · · P(0, L)
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
P(L, 0) · · · P(L, L)

3
777775

2
666664

g0

.

.

.

.

.

.
gL

3
777775

=

2
666664

p(0)
.
.
.

.

.

.
p(L)

3
777775

(24)

where P and p are functions of the auto ryy(.) and cross rsy(.) corre-
lation of the received signal y(n) with the clean signal s(n):˛̨̨
˛̨̨ P(0, 0) = ry(0)

P(i, 0) = P(0, i) = 2 ry(i) i = 1 : L
P(i, j) = P(j, i) = 2 (ry(i − j) + ry(i + j)) i, j = 1 : L

˛̨
˛̨ p(0) = rsy(0)

p(i) = 2 rsy(i) i = 1 : L

The filter coefficients are estimated by inverting (24), and the enhanced
signal is processed as in (22).
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