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ABSTRACT

This paper presents a robust approach to improve the perfor-

mance of voice activity detector (VAD) in low signal-to-noise

ratio (SNR) noisy environments. To this end, we first gener-

ate sparse representations by Bregman Iteration based sparse

decomposition with a learned over-complete dictionary, and

derive a kind of audio feature called sparse power spectrum

from the sparse representations. we then propose a method to

calculate the short segment average spectrum and long seg-

ment average spectrum from sparse power spectrum. Finally,

we design a criterion to detect speech region and non-speech

region based on the above average spectrum. Experiments

show that the proposed approach further improves the perfor-

mance of VAD in low SNR noisy environments.

Index Terms— Sparse decomposition, sparse spectrum,

average energy, voice activity detection.

1. INTRODUCTION

Voice activity detector is a mean to distinguish speech seg-

ments from non-speech segments in an audio stream. VAD

plays a critical role on increasing the capacity of transmission

and speech storage by reducing average bit-rate, therefore it

is widely applied in many speech applications [1,9], including

mobile communication services, real-time internet telephony,

automatic speech recognition, speech enhancement, and vari-

able rate speech coding.

A variety of VAD algorithms were proposed over the past

decades [1-5]. Most of these methods use features that de-

pend on frequency-domain energy, zero-crossing rate, cor-

relation coefficients, and periodicity estimation. Since their

shortcomings, such as sensitive to noises and inaccuracy in

SNR estimating, these methods do not work well in low S-

NR noisy environments. Recently, statistical model based al-

gorithms have been proposed [6-9]. This kind of VADs are

posed as a hypothesis testing problem with statistical models

of speech and noise, although assumptions made about the s-

tatistics of noise do not always hold in practice. The statistical

model based algorithms are not good in low SNR noisy envi-

ronments, since the inherent high-fluctuation of a-posteriori

This research is partly supported by the National Natural Science Foun-

dation of China under grant No. 91120303 and 61071181.

SNR and the abruption of transient speech segments are more

than the noise segments[16].

It is known that speech signal is mainly superposed by a

group of underlying components [10-12], which provide im-

portant cues for improving the detection performance. Ob-

taining these cues is a difficult task, the important reason is

that the elements of decomposition set do not well reflect the

speech underlying components in most signal processing ap-

proaches [10]. Currently, Bregman Iteration based sparse de-

composition not only work well in reducing noise, but also

shows good performance at capturing the underlying compo-

nents from noisy speech [13]. Based on Bregman Iteration

based sparse decomposition, we propose a VAD approach to

improve the detection performance under low SNR noisy con-

dition.

The proposed approach contains the following steps.

First, an over-complete dictionary is learned from speech

corpus by online dictionary learning algorithm [14]. It has

been shown that learned dictionary is well adapted to natural

speech underlying components [14]. Next, the Bregman Iter-

ation based sparse decomposition is used to extract the speech

signals from noisy speech and generate sparse representations

[13]. Then, squaring the sparse representations and add them

to get a kind of sparse power spectrum. After that, the short

segment average spectrum (SSAS) and long segment average

spectrum (LSAS) are calculated from sparse power spectrum.

Finally, a detection criterion is designed to detect speech and

non-speech segments. The criterion is based on short segment

and long segment average energy. Experimental results show

that the proposed approach further improves the detection

performance of VAD in low SNR noise environments.

2. SPARSE DECOMPOSITION

2.1. Dictionary learning

In order to well adapt to the speech signals, an over-complete

dictionary is learned from speech corpus. The dictionary

learning is an optimization problem [10], which can be esti-

mated by solving the following regression problem

argmin
Ψ,C

λ‖C‖0 +
1

2δ
‖X −ΨC‖22 (1)

where ‖.‖0 represents l0-norm operator; λ and δ2 denote the

weight of the l0-norm function and the variance of residu-
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al energy respectively; X = [x1, · · · , xT ] is a speech frame

set, in which each column xt is a D-dimensional vector; C =
[c1, · · · , cT ] is the sparse coefficient set, in which each colum-

n ct is a L-dimensional vector; Ψ = [ψ1, · · · , ψL] ∈ RD×L

represents an over-complete dictionary which is initialized by

cosine vectors, and each column ψl of Ψ is a unitary vector.

Since there are two problems in (1): both of l0-norm and

joint optimization of Ψ and C are non-convex functions, so it

is difficult to conduct. Fortunately, for l0-norm problem, Can-

dés et.al [15] proved that it can be replaced by l1-norm; and

for the joint optimization problem, it can be simplified by al-

ternating optimization between Ψ and C. Then the modified

optimization formula can be rewritten as follow

⎧⎨
⎩

argmin
C

λ‖C‖1 + 1
2δ ‖X −ΨC‖22

argmin
Ψ

λ‖C‖1 + 1
2δ ‖X −ΨC‖22

(2)

2.2. Sparse decomposition

For a given noisy speech segment st = xt+nt (t = 1, · · · , T )
and the learned dictionary Ψ, the sparse decomposition is

argmin
ct

λ‖ct‖1 +
1

2δ
‖st −Ψct‖22 (3)

where ct denotes the sparse representation vector of st, and

satisfies

‖ct‖0 � L (4)

Sparse decomposition is effective to encode the incom-

ing signals, but it is a difficult problem to reduce noises from

noisy speech for the minimization equation. Currently, J-F.

Cai et.al [13] have argued that Bregman Iteration algorithm is

an efficient and robust-to-noise algorithm for solving the min-

imization equation (4). The procedures of Bregman Iteration

are {
vk+1 = vk −Ψ

′
(Ψckt − st)

ck+1
t = Υδ(δv

k+1)
(5)

where c0 = v0 = 0, and

Υζ(ω) := [γζ(ω(1)), · · · , γζ(ω(L))]′ (6)

(7) is the soft threshold operator with

γζ(ξ) =

{
0, if |ξ| ≤ ζ
sgn(ξ)(|ξ| − ζ), if |ξ| > ζ

(7)

and the stopping criteria is

std(st −Ψck+1
t ) < δ or iter. < 1000 (8)

where std(.) denotes the standard deviation operator of st −
Ψck+1

t ; the iteration of (6) will stop whenever the std of

residual st −Ψck+1
t is less than δ or the number of iterations

exceeds 1000, and the final result ck+1
t is assigned to ct.

Fig. 1. SSAS and LSAS curves of a noisy speech stream (S-

NR=0 dB and the added noise is white noise).

Fig. 2. SSAS and LSAS curves of a noisy speech stream (S-

NR=0 dB and the added noise is babble noise).

3. THE PROPOSED APPROACH

3.1. Sparse power spectrum

On the basis that the additive noises are reduced from noisy

speech by Bregman Iteration algorithm, we square the ele-

ments of the above sparse representation vector ct and add

them to generate a kind of energy feature, which we call s-

parse power spectrum. The formula is

et =
1

L

L∑
l=1

c2l,t (9)

where cl,t is the lth element of sparse representation vector

ct; and et denotes the sparse power spectrum of ct.

3.2. SSAS and LSAS

We found that the sparse power spectrum of speech segments

generally greater than the non-speech segments, even in low
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SNR noisy environments. Due to this finding, it is reasonable

to assume that the discrimination of the SSAS, which is the

average of a small number of adjacent sparse power spectrum-

s, is more robust and discriminating (see Fig. 1, 2). Then, it is

also rational to refer that the LSAS, which is the average of a

great number of adjacent sparse power spectrums, is more s-

tationary and can be used as a threshold of the SSAS between

speech segment and the non-speech segment (see Fig. 1, 2).

Based on the above assumption and reference, we proposed a

simple and efficient algorithm to detect the speech segments

and non-speech segments in low SNR noisy environments.

Given sparse power spectrum et (t = 1, · · · , T ), the S-

SAS can be computed by the following formula

yt =
1

2I + 1

t+I∑
i=t−I

ei (10)

where I represents the displacement length from the sparse

power spectrums et, which is assigned to 3 in this paper; and

yt denotes the SSAS of et.
Given sparse power spectrum et (t = 1, · · · , T ), the L-

SAS calculating representation of LSAS is

βt =
1

t− tt

t∑
i=tt

ei (11)

where tt is the start time for calculating the LSAS of et; in

this paper, tt is either assigned to t− 6000 when t > 6000, or

assigned to 1; and βt denotes the LSAS of et.

3.3. Detection criterion

Fig. 1 and 2 show the SSAS and LSAS curves of a speech

stream in noise environments (SNR=0 dB). The speech comes

from a man speaker of TIMIT corpus. The noises are white

and babble noise respectively, and both of them are taken

from NOISEX-92 database. The blue curves of part C rep-

resent the SSAS and the red curves represent the LSAS in the

two figures, and the comparisons of SSAS and LSAS in the

both features indicate that the above assumption and reference

accord with the factual cases. So we can design a detection

criterion based on the differences between SSAS and LSAS.

When the SSAS and LSAS of noisy frame st (t =
1, · · · , T ) is given, the formula of the designed detection

criterion is {
H0 : yt < βt
H1 : yt ≥ βt

(12)

where H0 and H1 denote speech absence and presence, re-

spectively; yt is the SSAS of noisy audio frame st; and βt is

the LSAS of noisy audio frame st.

4. EXPERIMENTS AND ANALYSIS

The duration of test speech data was 240s which concate-

nated by recordings of four males and four females. The

total recording duration of each speaker was approximate-

ly 30s. These speech recordings were selected from TIMIT

corpus, and were sampled at 8000 Hz. The speech material

was marked manually at each 10 ms frame. In the test da-

ta, 55.84% of the whole frames were labeled as active speech

frames, in which 38.16% were voiced sound and 17.66% were

unvoiced sound frames. In order to simulate adverse environ-

ments, the white, babble, and factory noises were mixed with

the clean test data of 0 dB SNR. These noises were taken from

NOISEX-92 database. For evaluating the performance of the

proposed approach, the detection probability (PD) and false

alarm probability (PF) are exploited. In addition, Gaussian-

LRT [7] was exploited as the baseline, and the proposed ap-

proach is named SSAS-LSAS for short.

Fig. 3, 4, and 5 present the ROC curves of the proposed

approach under noises condition (SNR=0 dB). Fig. 3 shows

that, in white noise environment, the performance of SSAS-

LSAS is a little less than the baseline when PF < 0.058, but

the performance of SSAS-LSAS obviously outperforms the

baseline when the PF > 0.058. Fig. 4 displays that, under

factory noise condition, the performance of SSAS-LSAS is

better than the baseline when 0.016 < PF < 0.16, and the

performance of the SSAS-LSAS is similar with the baseline

when PF < 0.016 and PF > 0.16. Fig. 5 shows that SSAS-

LSAS obviously outperforms the baseline.

From these experimental results, a conclusion can be de-

rived that the proposed approach further improves the detec-

tion hit rates of VAD in low SNR noisy environments.

5. CONCLUSION

In this paper, we proposed a robust VAD approach to im-

prove the detection performance under low SNR noisy condi-

tions. We first learn a over-complete dictionary from speech

corpus to well adapt the natural speech underlying compo-

nents. Then, we generate sparse representations by Bregman

Iteration based sparse decomposition with the learned over-

complete dictionary. After that, we derive a kind of audio fea-

ture named sparse power spectrum, and go further to generate

the SSAS and LSAS for detection. Finaly, we present detec-

tion criterion based on the above SSAS and LSAS. Experi-

ments show that the proposed approach can further improve

the performance of VAD under low SNR and noise condition-

s.
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