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ABSTRACT

This paper presents a new algorithm for addressing the permutation 
ambiguity in convolutive blind source separation.  The proposed 
algorithm seeks to prevent permutations by frequency 
oversampling, and then exploiting the induced correlation between 
bins. Any remaining permutation is then corrected by beam 
pattern estimation. Cascade initialization is shown to improve 
system performance while decreasing processing time, while 
frequency oversampling is shown to increase performance with 
slight increases in computational time.  The algorithm is proven
robust against isotropic noise, producing a SIR improvement of 
12.9 dB when the reverberation time is 260 ms, and the signals at 
the input are only 5 dB above the noise floor.*

Index Terms— Blind source separation (BSS), convolutive 
mixture, frequency-domain ICA, permutation problem

1. INTRODUCTION

Blind Source Separation (BSS) has been a topic of considerable 
interest for many years.  The goal of the technique is to reconstruct 
individual sources from observed mixtures of different sources, 
without a priori knowledge of the individual sources or the mixing 
system.  The general mixing model for the Blind Source Separation 
problem is given as:

( ) ( )n nx A s + ( )n (1)
The solution, or separation equation, to this, is a multiplication 
with matrix W:

( ) ( )n ny W x (2)
where ( ) =  [ ( ) … ( )] is the source vector of N
sources at time n (unknown to the algorithm), ( ) = [ ( ) … ( )] is the observed vector of M simultaneous 
samples,  ( ) =  [ ( ) … ( )] is the isotropic noise at the 
microphones, and  ( ) =  [ ( ) … ( )] is the separated 
output signals. For well-defined systems, it must be that M N.
For instantaneous mixtures, A and W are matrices of size MxN and
NxM, respectively, and the operator indicates matrix 
multiplication.  When dealing with convolutive mixtures, the same 
notation is broadened to describe the new conditions.  Each 
element of the A and W matrices is an FIR filter, and the symbol
instead indicates convolution of each element with each signal, 
followed by summation of the rows.
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A more complete and detailed introduction to the BSS 
problem can be found in Mazur and Mertins [1] and in Parra &
Spence [2].

Inherent to the BSS problem is the permutation 
ambiguity.  Since the input is a mixture of N sources with an 
unknown mixing matrix, the order of inputs cannot be known with 
absolute certainty.  That is, if input s1 and sN were interchanged, 
and row 1 and row N of A likewise swapped, the observed signal 
would be identical.  For convolutive mixtures handled in the 
frequency domain, this becomes a great concern:  to ensure 

a
arrives at output k, it must be ensured that the corresponding 
component of the same signal at b arrives at output k. If this 
is not met, the signals (or portions thereof) remain mixed.

The use of ICA introduces the scaling ambiguity.  It 
cannot be known for sure that the output is of the same magnitude 
as its corresponding source; it could be scaled by a constant.  Using 
a frequency-domain BSS algorithm, the effect of this uncertainty is 
more noticeable than in the time-domain. Assuming perfect 
separation, and that the permutation ambiguity is resolved, each 
output signal may be scaled by an arbitrary constant in each 
frequency bin.  The resulting effect is that an additional filter is 
applied to the output signal. The usual consequence of this is 
increased reverberation, which in the case of speech signals 
reduces intelligibility.  Fortunately, a number of different 
algorithms have been shown to adequately correct the scaling 
ambiguity.  These include filter shortening [3], shaping [4], or the 
popular Minimal Distortion Principle [5].  This last algorithm 
removes any additional filtering on the signal produced by the 
demixing algorithm, leaving only what is caused by the mixing 
environment.  This is accomplished by applying postfilters on the 
separated signals while still in the time-frequency domain.  The 
postfilters take the form of the diagonal matrix , calculated in 
[5] as:

1 1diag{ } (3)
where is the separation matrix at frequency bin .

To correct the permutation ambiguity is a task far more 
vital for the success of the separation technique.  It has been the 
primary focus of a great number of BSS papers.  

Permutation alignment algorithms are usually divided 
into two categories.  The first are approaches based on the 
geometry of the microphones relative to the sources.  These utilize 
methods such as time difference of arrival (TDOA) or direction of 
arrival (DOA) [6], [7], [8].  The permutation of each frequency is 
calculated on its own merit, independently.  These algorithms 
usually present a strict requirement on the geometry of the system, 
such as requiring an array of microphones with constraints on 
spacing.
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Algorithms of the other classification rely on inter-
frequency correlation to align permutations. This approach 
originated with Parra and Spence [2], who demonstrated that 
demixing filters with permutations would be longer in time 
domain, and thus less smooth in frequency.  They used a projection 
operator calculated from the time domain to maximize the 
smoothness of the frequency response, which in turn controlled 
permutation. These techniques are usually more accurate when the 
signals are long enough to correlate frequency bins.  However, 
these suffer from instability in the manner that one error in 
ordering can propagate through several neighboring frequencies.  
The result is a partially separated set of signals, where one 
frequency range will have one permutation, while another will be 
ordered differently.  

Recent techniques have attempted to bridge the gap 
between these approaches.  Mazur and Mertins [1] classify 
frequencies into groups known to have the same permutation, and
then align the groups with each other.  In [9] each frequency bin is 
aligned utilizing a target amplitude envelope (based on 
surrounding frequencies) and TDOA estimation.

Like recent algorithms, the proposed method attempts to 
utilize both approaches to align frequency bins.  All of these 
algorithms, however, focus on correcting permutation errors after 
separation. This paper will examine a method to prevent
permutation during the ICA stage via inter-frequency correlation, 
then correct the remaining errors using directivity estimation.

1.1. Interpolation in Frequency Bins

When a signal is converted to the frequency domain using an N-
point FFT, where N is at least twice as large as the length of the 
signal, it produces a representation that is smoothed in the 
frequency domain.  This smoothing occurs due to points inserted in
the frequency response that are interpolations of the surrounding 
data.

When a signal is taken from the time domain to the time-
frequency domain via a series of short-term Fourier transforms
(STFT), and this frequency interpolation is exercised, it creates a 
series of subbands with overlapping frequencies.  Any cross-
section of this data taken at a specific point in time will appear 
oversampled in the frequency domain.  This paper defines the 
value K as the frequency oversampling factor, obtained via the 
ratio of the FFT size to the length of the data window L.  Since 
each of these new frequency bins are interpolations of the 
surrounding bins, each bin is now correlated to its neighbors.

Figure 1 shows the correlation between these subbands.
An eight-second long speech signal, s(t), was converted into time-
frequency domain representation, SK using a series of STFTs 
with a Hamm window.  For demonstration, the data window length 
was kept to L = 8, and the value of K varied from 1 to 8.
Frequency bins after K(1+L/2) were discarded.  The cross-
correlation matrix RSS was computed from the remaining bins.  
The images were created by mapping the magnitude of the auto-
correlation matrix to pixel brightness:  a lighter shade indicates a 
higher correlation. For the first two images, the frequency bin for 
each column is labeled.

In the first image (K = 1), there is no oversampling in the 
frequency domain. Since the source file is a speech signal, there is 
already some inter-frequency dependence. Frequency bins 0 and 1 
are correlated, as is bin 3 with both 2 and 4.  However, there is 
effectively no correlation between bins 1 and 2.

As the frequency oversampling K increases, new bins are 
created which interpolate between the surrounding frequencies.  At K = 2, the data in bins 2 and 4 contain the data that was initially in 
bins 1 and 2 for K = 1.

As K increases, each frequency bin becomes increasingly 
correlated with its neighbors.  At K = 1, bins 1 and 2 are 
statistically uncorrelated.  However, at K = 2, bin 2 is correlated 
with 3, which in turn is correlated with 4. It is this statistical 
correlation between adjacent frequency bins that will be exploited 
to reduce the occurrence of permutations during separation.

2. PROPOSED ALGORITHM

The proposed BSS algorithm, Cascaded ICA with Intervention 
Alignment (CICAIA), makes use of the overlap in the frequency 
domain by first preventing, and then correcting, as many 
permutation errors as possible in the initial calculation of the 
separation matrices.  Any unresolved permutations can then be 
corrected by a block depermutation step.  The algorithm may be 
summarized by the following steps:

1) Convert the incoming signals into their Time-Frequency 
domain representations, using a short-time Fourier transform
with frequency overlap.

2) In one sweep across the frequencies, 
a) For each bin after the first, initialize the ICA algorithm 

with the result from the previous frequency bin.
b) Perform ICA to separate the signal.
c) Check for possible permutations.
d) If permutation is confirmed, attempt to correct it.

3) If needed, correct permutations in block over the entire array 
of frequencies.

4) Drop unnecessary frequencies.
5) Rescale remaining frequencies.
6) Reconstruct signal.
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K = 1 K = 2

K = 4 K = 8

Figure 1:  Magnitude of RSS with increasing overlap (KK ).  
White squares are of high magnitude.
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The full description of the algorithm follows:

2.1. Conversion

To begin, all input signals are converted into the time-frequency 
domain by means of the STFT. Data segments of length L are 
Hamm windowed, then converted into their frequency domain 
representation using a KL-point FFT. This leads to an 
oversampling in the frequency domain by a factor of K. As the 
source signals are real, the Fourier transform is a conjugate-
symmetric function; thus it is sufficient to keep only the first 
½KL + 1 of these bands for perfect reconstruction. During 
processing, only frequencies from 128 to 3872 Hz were 
considered; frequencies outside this range were set to zero.

2.2. ICA with Cascaded Initialization

In this phase, a two-stage permutation control unit designed by 
Peng Xie [10] operates sequentially on the individual bins. In each 
frequency, the separation matrix is obtained by ICA, and is then 
checked for permutation against that of the previous subband. If a 
permutation is suspected, the order of outputs is determined 
relative to the previous subband, and corrected if necessary.  The 
permutation-corrected separation matrix is then used as the 
initialization for the ICA algorithm of the next subband.

The proposed method utilizes the fixed-point ICA 
algorithm proposed by Hyvärinen, with a modification made to 
determine the complete demixing matrix (W ) at each update
(rather than determining W one column at a time). The matrix is 
declared to be converged when it stops changing “significantly”
after each iteration—that is, when the magnitude of the update 
vector drops below a threshold. When this occurs, the demixing 
matrix can be compared to the previous frequency bin to determine 
permutation.

To determine if the demixing matrix has been permuted, 
a simple, quick-to-compute metric is necessary.  As Section 1.1
explains, there is some cross-correlation between most neighboring 
frequency bins of a real-world signal. Because of this correlation, 
the coefficients of separation matrices in adjacent frequency bins 
will not change significantly.  The magnitude of distance between 
these coefficients thus provides a simple, quick, and efficient 
criterion to determine whether a permutation exists.  This is
defined as: , ; , ; 1,( ) i j i ji jD W U (4)

where D( ) is the distance, Wi,j; is the separation matrix at 
frequency , and Ui,j; -1 is the permutation-corrected separation 
matrix of the previous frequency bin. A threshold is chosen: if D( ) is above , there is a suspected permutation between -1 and 

, and an intervention depermutation step is taken. For the 
simulations shown below, the threshold was selected to be = 0.2. 
In the scenario of only two sources, the permutation can be 
removed by the directivity technique [8], [11].  This technique 
determines the directionality of the received signals based on the 
estimated demixing matrix, and re-orders the outputs based on this 
estimate.  For the case of three or more sources, this technique 
becomes less reliable.  Instead, the outputs should be sorted via 
correlation with harmonics or adjacent bins known to have good 
separation [12], or via a TDOA approach [6], [7]. This
intervention step is not performed on every frequency, only those 
that are suspected of permutation. As a result, the algorithm 
selected for depermutation in this fashion can be more 

computationally complex, without significantly delaying the 
completion time of the entire system. Moreover, while a greater 
number of frequency bins are present in CICAIA, it is not
inherently more computationally complex than other algorithms.

If the new order of outputs on a suspected permutation is 
different from the previous arrangement, the bin is labeled as an 
actual permutation.  The distinction is important. Bins suspected 
of permutation require the intervention step—a process which 
slows down processing.  Actual permutations will degrade 
performance if not detected. Therefore, minimizing actual 
permutations is essential; minimizing suspected permutations
without losing actual permutations, is additionally beneficial.

Even without frequency overlap, the cascaded ICA 
initialization approach is effective at reducing the number of 
suspected and actual permutations in the BSS solution.  Initializing 
the ICA algorithm in each frequency with the separation matrix 
from the previous bin significantly increases the chance the 
converged output will be in the same arrangement for most bins.
This is then immediately tested, and corrected as necessary.  
Instead of applying a blanket permutation alignment algorithm to 
the output of all frequency bands, corrective efforts are only 
necessary at the frequencies where such a permutation is 
suspected. With the increased correlation between frequency bands 
created by oversampling in the frequency domain, the solution 
improves even further.  As K increases, the correctly-ordered 
separation matrices between adjacent bands will become 
increasingly similar, making a permutation easier to detect.

3. SIMULATIONS

Multiple aspects of the proposed algorithm have been tested using 
simulated mixtures.  All source signals are eight-second long 
samples of speech, sampled at 8 kHz. The impulse response from 
each source location to the microphone array is generated using the 
image model, using different values for room reverberation time.
No mixing filter exceeded 3000 samples in length. Additional 
white Gaussian noise is applied to the pickup of each microphone 
when the mixed signals are generated.

To test the robustness of the algorithm against noise, its 
performance was evaluated on simulated data along with several 
other contemporary approaches.  The simulated room was 
6 x 5 x 3 meters, with a reverberation time of T60= 260 ms.  Two 
microphones were placed at the center of the room, 16 cm apart 
from each other.  Two sources were placed one meter away from 
the microphones, at 45° and 135°.  The isotropic noise at the 
microphones was increased with each simulation, starting at 50 dB 
below the mixture strength.

Figure 2 compares the improvement in SIR from the 
proposed (CICAIA) algorithm against a nonblind permutation 
alignment (as a theoretical maximum), and against the algorithms 
of Pham, Servière, and Boumaraf [13]; Rahbar & Reilly [14]; Parra 
and Spence [2]; and Trinicon [15]. All algorithms were run with a 
frame length of 1024 samples, with 75% overlap in time.  CICAIA 
use a frequency oversampling (K) factor of 8.

A 30 dB SNR), Pham performed the 
best. Rahbar & Reilly [14] produced a similar quality of result.
Comparatively, CICAIA performed the second-worst, but only one 
dB below Trinicon. At higher noise levels, the performance of 
most algorithms began to taper off; however, the CICAIA
algorithm did not drop in performance until 5 dB. Indeed, at very 
low SNR, CICAIA performed almost as well as the ideal case.

287



Figure 3 shows the SDR results from the above 
simulation. Under low noise conditions, CICAIA and Pham 
produce the best quality output (highest SDR).  As the noise level 
increases, Pham’s quality declines faster.

4. CONCLUSION

In comparison with block depermutation algorithms, 
progressive depermutation allows corrective efforts to focus on 
frequency bins where a problem is suspected.  This allows the use 
of more computationally-intensive depermutation techniques 
without significantly slowing down the process as a whole.  The 
ICA chain also means that a successful result in one frequency bin 
effects good separation in successive bins. Progressive 
depermutation is therefore a feasible replacement, or at the least 
supplement, for block depermutation. 

In comparing the performance of different algorithms 
under varying SNR environments, we found that CICAIA
performed the best at low SNRs (< 20 dB). In low noise 
environments, CICAIA produces only moderate separation. In high 
noise environments, CICAIA has the best separation. Under any 
condition, it produces output with the best Signal-to-Distortion 
ratio.
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Figure 2: Performance of proposed algorithm (CICAIA) in increasing 
noise in comparison with other methods (Pham [13], Rahbar & Reilly 
[14], Parra & Spence [2], and Trinicon [15])

Figure 3: Separation Quality of algorithms
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