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ABSTRACT

We present the use of a Tikhonov regularization based method, as
an alternative to the Non-negative Matrix Factorization (NMF) ap-
proach, for source separation in professional audio recordings. This
method is a direct and computationally less expensive solution to
the problem, which makes it interesting in low latency scenarios.
The technique sacrifices the non-negativity constraint that character-
izes NMF in exchange for a closed-form solution to the problem of
spectrum factorization. We quantitatively evaluated it in terms of
reconstruction and separation quality on a dataset of excerpts of pro-
fessionally recorded songs with singing voice. Results show that the
the proposed approach achieves similar quality to that of NMF.

Index Terms— Source separation, Harmonic analysis

1. INTRODUCTION

Spectrum decomposition has often been used in audio transcription
and source separation tasks. It consists in modelling the spectral
representation of a signal as a combination of a set of spectral com-
ponents.

Some techniques such as Harmonic Temporal Clustering (HTC)
[1] propose spectrum components with parameterized frequency and
temporal envelopes and with a fixed harmonic structure. Similarly
Wu et al. [2] consider components for the modelling of transients.
In both cases the parameters are found using iterative Expectation
Maximization update rules.

Non-negative Matrix Factorization (NMF) has received a lot of
attention in the past few years. NMF was first introduced in the
context of music transcription in [3]. The main strengths of such
methods are the non-negativity constraints on the component gains,
the ability to learn the components and its flexibility in adding addi-
tional cost terms. Raczyński et al. [4] use a harmonic initialization
of the components and musically inspired penalties on the factoriza-
tion. Durrieu et al. [5] propose an NMF method to decompose a
signal using a source-filter model and then performing NMF on the
residual. Ozerov et al. [6] present a source separation framework in
which priors on the distributions of the spectral components can be
introduced in a hierarchical way. In all cases the decomposition is
performed iterating over a set of multiplicative rules.

Existing spectrum decomposition methods have proven useful in
audio source separation tasks, however their iterative nature carries
a high computational cost. Here we present an alternative method
based on Tikhonov regularization that sacrifices the flexibility and
the non-negativity constraints of NMF or the generality of other
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methods in exchange for a direct and rapid solution with a much
lower computational cost.

2. SIGNAL DECOMPOSITION MODEL

The main assumption of our spectrum decomposition method is that
the short-term Fourier transform (STFT) of our audio signal, Y is
a linear combination of NC elementary spectra, also named basis
components. This can be expressed as Y = BG where Y ∈ R

NS×1

is the spectrum at a given frame m, NS being the size of the spec-
trum. B ∈ R

NS×NC is the matrix whose columns are the basis
components, it is also referred to as the basis matrix. G ∈ R

NC×1

is a vector of component gains for the current frame.

Our focus is on low latency, unsupervised applications which
require the decomposition of each spectrum frame to be done very
quickly. Therefore, we will only consider solutions in which the
basis components B are constant and fixed a priori.

It is obvious that the choice of the basis matrix has a large in-
fluence on the decomposition results. It is not in the scope of this
article to study the effect of the basis matrix, but rather to propose a
computationally cheap method to perform the decomposition given
a suitable basis matrix.

As in many other NMF based [7, 5] approaches we set the basis
matrix to be composed of a set of NP single pitch multiple-harmonic
spectra. However in order to model harmonic sources of different
timbres we must allow different spectral envelopes. This is done by
filtering the single pitch components with a filterbank of NF filters.
This results in a total of NP ·NF harmonic basis components.

Modeling only harmonic sources is often not enough to explain
all the possible observed spectra. In [2] the authors propose mod-
elling wideband components to reconstruct transient sounds or back-
ground noise. We take a similar approach by adding to our basis
matrix the spectra of the filters in our filterbank as wideband compo-
nents. This results in a total of NC = (NP + 1) ·NF .

The spectra components can be defined as:

ϕ[i, n] = 2πflHNP
2

iH−F/2+n
HNP − 1

Sr ln (2)

Ei[ω] =
F∑

n=0

w[n]

(
Nh∑
h=1

sin (hϕ[i, n])

)
e−jωn

Bi,k[ω] =

{
Uk[ω]Ei[ω] if i ≤ NP

Uk[ω] if i = NP + 1
(1)

with H = (1 − α)F . Where α is a coefficient to control the fre-
quency overlap between the components, F is the frame size, Sr the
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Fig. 1. Two components of our basis matrix B. Top shows Ei[ω]
for a frequency of 480Hz. Middle shows Uk[ω] for two consecutive
values of k. Bottom shows Bi,k[ω] for the selected Ei[ω] and Uk[ω].

sample rate, w[n] is the analysis window, Nh is the number of har-
monics of our components, Bi,k is the spectrum of the component
of ith pitch filtered by kth filter. Uk is the spectrum of the kth filter
in our filterbank. Uk is constructed as a sequence of NF Hann win-
dows, linearly distributed in the Mel scale and with a 50% overlap.

The column vectors Bi,k are stacked horizontally to form the
matrix B. This results in the spectrum Bi,k of the component of ith

pitch and kth filter being the column vector BiNF+k.

3. NON-NEGATIVE MATRIX FACTORIZATION

Non-negative matrix factorization (NMF) has been widely used in
audio source separation tasks [5, 6, 8]. The NMF-based approach
to solving our spectrum decomposition problem Y = BG consists

in finding the best non-negative estimate of the component gains Ĝ
that minimizes a given objective function. We consider the following
objective functions:

Φeuc(G) =

NS∑
k=1

1

2
([BG]k − [Y ]k)

2
(2)

Φkl(G) =

NS∑
k=1

[Y ]klog
[Y ]k
[BG]k

− [Y ]k + [BG]k (3)

Φis(G) =

NS∑
k=1

[Y ]k
[BG]k

− log
[Y ]k
[BG]k

− 1 (4)

where [X]k is the kth element of vector X . It is well known [8] that
the solution to the non-negative factorization problem given these
objective functions results in the following multiplicative update
rule:

ĜNMF
n = ĜNMF

n−1 ⊗
Bt

((
BĜNMF

n−1

)[β−2]

⊗ Y

)

Bt
(
BĜNMF

n−1

)[β−1]
(5)

where ⊗ is the Hadamard product (an elementwise multiplication
of the matrices), all divisions are elementwise and 0 ≤ β ≤ 2 is
the coefficient that will define the objection function that is being
minimized. β = 2 for the Euclidean distance (NMFeuc) β = 1
for the Kullback-Leibler divergence (NMFkl) and β = 0 for the
Itakura-Saito divergence (NMFis). Finally n is the iteration of the

solution and ĜNMF
0 is a random positive vector.

4. TIKHONOV REGULARIZATION

The condition number of the basis matrix B defined in Equation 1
is very high (κ(B) ≈ 5.9 · 1017), therefore we may assume that our
problem is ill posed. This could be due to the harmonic structure and
correlation between the components in our basis matrix.

We propose using the Tikhonov regularization (TR) method [9]

to find an estimate of the compontents gains vector Ĝ given the spec-
trum Y . This consists in the minimization of the following objective
function:

ΦTR(G) =

NS∑
k=1

([BG]k − [Y ]k)
2 + ([ΓG]k)

2
(6)

where Γ is the Tikhonov matrix that defines the preference among
all possible solutions. In this study we set Γ = λW where W ∈
R

NC×NC is a singular matrix that allows weighting the a priori
probabilities of the solutions. λ is a positive scalar hyperparame-
ter. This parameter controls the effect of the regularization on the
estimated solution.

We have decided to give preference to solutions with a low norm
while compensating for biases due to energy differences between
components of different pitch. This is known as Weighted Minimum
Norm Estimate (WMNE) and it can be acheived by defining W as a
diagonal matrix such that:

diag(W )iNF+k =

√√√√NS∑
ω=1

NF∑
k=1

B2
i,k[ω] (7)

where i = 1...NP + 1 and k = 1...NF . The main reason for such a
choice is that we assume that the basis components correspond quite
well to the sources in the audio signal and only a few sources are
simultaneously present in the audio. Therefore the gains of the com-
ponents should have few high values and low small values, leading
to a small norm.

The TR method, results in the following closed-form solution

ĜTR = RY where ĜTR is the estimated components gains, and R
is defined as:

R = (W tW )−1Bt[B(W tW )−1Bt + λINS ]
+

(8)

where [X]+ denotes the MoorePenrose pseudoinverse of X . The
calculation of R is computationally costly, however this operation
is independent of the input spectra and can be performed before the
analysis of the audio signal. The R matrix only depends on B and
Γ . As we saw in section 2 the B only needs the parameters of the
analysis process, therefore the only operation that is performed at

each frame is ĜTR = RY .

Compared to the NMF method, the TR approach does not con-
strain the component gains to be non-negative. However, as we will
show in the experiments, this assumption has little impact on the
performance of the reconstruction and source separation tasks.

5. EVALUATION

The main goal of the article is to compare the TR closed-form solu-
tion and NMF solution in the general context of source separation.
The comparison will be made on two main factors:

• How faithful is the factorization to the data?

• How well does the factorization separate the data?
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In order to evaluate the factorization quantitatively, we simply com-
pare the Signal to Noise Ratio (SNR) of the reconstruction without
modifying the factors (components and gains). The reconstruction is

computed as Ŷ = BĜ. And the SNR calculation is performed in
the frequency domain:

SNR = 10 · log10
∑

Y 2

∑∣∣∣Ŷ − Y
∣∣∣2 (9)

To quantitatively evaluate how well the factorization separates the
data, we perform a simple separation of the vocal track on a set of
audio recordings. The separation produces two versions of the ex-
cerpt, one with only the voice track (foreground) and another with
all but the voice track (background). We follow the same procedure
as in [10] for the separation. We reconstruct the spectrum selecting

the candidates in Ĝ that correspond to the voice. We have run two
different tests: a supervised test in which the pitch of the vocal track
is estimated in a previous stage using the well known Yin method
on the vocal track in isolation, and an unsupervised test in which the

pitch is estimated using Ĝ:

if0 = arg max
i=1...NP

⎛
⎝ ∑

k=1...NF

max
(
Ĝi,k, 0

)⎞⎠ (10)

where if0 is the index corresponding to the f0 at a given frame.
Due to correlations between pitches with harmonic relations, we also
remove pitches that are at intervals Θf (Θi in pitch index units) from
the predominant pitch.

isel = {if0 + o|o ∈ Θi} (11)

Since the voice often presents pitch fluctuations a series of adjacent
basis components will also be selected. In our experiments, we select
Δf semitones (Δi in pitch index units) around the selected pitches.
This results in the following set of selected indices:

Csel = {(i± j)NF + k|i ∈ isel, j ≤ Δi

2
, k ≤ NF } (12)

where j ≥ 0 and k ≥ 1. The estimate of the foreground and back-
ground spectra are computed using a binary mask M ∈ R

NC×1 on
the component gains:

Ml =

{
1 if l ∈ Csel

0 else
(13)

Ŷf = γ(M ⊗ Ĝ)B Ŷb = ((1−M)⊗ Ĝ)B (14)

where γ > 1 is a gain on the foreground estimation. This is needed
because part of the target source energy is actually spread in other
pitch components that share harmonic relations, such as fifths and
octaves.

Once we have the spectra estimates we calculate the actual fore-
ground and background Discrete Fourier Transform (DFT) signals
using Wiener filtering:

Ŝf =
Ŷ 2
f

(Ŷ 2
f + Ŷ 2

b )
S Ŝb =

Ŷ 2
b

(Ŷ 2
f + Ŷ 2

b )
S (15)

where S is the original DFT of the mix signal. Note that eventhough
the mask applied to the component gains is binary, the final mask
applied to the DFT frames is actually a soft mask, resulting from
the Wiener filtering. To go back to the time domain we apply a

10 20 30 40 50

Iteration

0

5

10

15

20

S
N

R
 (

d
B

)

TR
λ=0.01

TR
λ=0.10

TR
λ=1.00

TR
λ=10.00

NMF
euc

NMF
is

NMF
kl

Fig. 2. Reconstruction SNR versus the factorization method and
number of iterations.

simple overlap and add technique. Finally we evaluate the perfor-
mance of the separation computing the Signal to Distortion Ratio
(SDR) with the popular audio source separation evaluation toolbox
BSSEV AL [11]. We compared each method to a baseline obtained
with the oracle separation [12]. The values used in our experiments
are the difference between the measure of each algorithm and the
oracle estimation measure, averaged for all audio examples in the
dataset. The evaluation material consists of a dataset of 11 multitrack
recordings with vocals, compiled from publicly available resources
(MASS1, SiSEC2, BSS Oracle3).

6. RESULTS

The STFT analysis is performed with a 92ms Blackman-Harris win-
dow (F = 4096 for signals at sample rate Sr = 44100Hz), a hop
size of 46ms (H = 2048) and a DFT size of 4096 which results
in NS = 2049. As in other pitch estimation techniques, we apply
whitening to the spectrum to enhance the high harmonics by apply-
ing a compression factor of η = 0.75 so that Y = |S|η . We also
apply this process to the components spectra of matrix B. Regard-
ing the parameters of the B matrix, we have set the number of filters
NF = 12, the lowest pitch frequency fl = 27.5, the frequency
overlap α = 0.5, 60 pitches per octave covering a total of 6 octaves
(NP = 60 · 6 = 360) and a maximum number of harmonics per
component Nh = 120. This leads to a total number of components
NC = 4332. The factorization has been performed using the pre-
sented NMF solution (5) for the three objective functions in Eq. 2
and the proposed TR method with λ = 10, 1, 0.1, 0.01. Audio
examples from our experiments are available online 4.

In Fig. 2 we observe the evolution of the SNR with relation to
the number of iterations of the NMF approaches. On the same fig-
ure we plot the SNR of the TR methods. The results for the NMF
behave as expected, constantly growing with the iteration count.
The SNR results of the TR approaches demonstrates reconstruc-
tion equivalent to NMF-based methods depending on the value of
λ. As expected, lower values of λ lead to better reconstruction
results. Methods to find optimal λ values will be considered in
future work. We have tested the following separation parameter
values: source estimation gain γ = 1, 2, 4, 8, component gains
mask width Δf = 0.1, 0.2, 0.4, 0.8 and intervals for the mask
Θf = {0}, {0, −12, 12}. For each factorization method the best

1http://www.mtg.upf.edu/static/mass
2http://sisec.wiki.irisa.fr/
3http://bass-db.gforge.inria.fr/bss_oracle/
4http://www.mtg.upf.edu/˜rmarxer/papers/icassp12
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Fig. 3. Separation SDR for the background source (non vocals track)
in the supervised test where the pitch is extracted from the vocal
track in isolation.
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Fig. 4. Separation SDR for the background source (non vocals track)

in the unsupervised test where the pitch has been estimated from Ĝ.

parameter combination has been selected for the plots and compara-
isons. In Figures 4 and 3 we show the results of our separation tests.
As we can see the difference between TR and NMF methods is rel-
atively small (< 2dB). In the supervised scenario of Fig. 3 we can
observe a slightly better performance of NMF with respect to TR.

However in the case where the pitch is estimated from Ĝ the TR
method performs better, this could be due to NMF finding and sepa-
rating better other non-predominant pitches. We must keep in mind
that the TR method is of much lower computational cost and is a
closed-form solution that does not require iterations. This makes it
much more attractive for low-latency and computation-limited con-
texts. Taking a closer look to the TR method we observe that in
contrast to the SNR case, lower values of λ do not necessarily lead
to better separation.

7. CONCLUSIONS

We present a new spectrum model and factorization method with
applications in source separation. This method, based on a TR ap-
proach to the spectrum decomposition problem, offers a direct and
closed-form solution at a significantly lower computational cost than
NMF-based methods. We also present a comparative study between
the TR approach and the NMF approach in the context of spectrum
reconstruction and source separation. The study shows how TR can
perform similarly to NMF with the proposed basis matrix.

In the current study the comparaison has been limited to one sin-
gle basis matrix. In future work we should compare the TR method
to NMF-based approaches using different basis matrices. Further-

more the flexibility of NMF should be taken into account when com-
paring the computational cost, for instance source-filter models for
the basis matrix could lead to a significant lower number of compo-
nents. NMF with sparsity constraints [4] should also be taken into
account. Another direction for future research consists in exploring
the choice of the Tikhonov matrix Γ . Finally other measures (SIR
and SAR) should also be evaluated for a more complete comparai-
son.

8. REFERENCES

[1] H. Kameoka, T. Nishimoto, and S. Sagayama, “A multipitch
analyzer based on harmonic temporal structured clustering.”
IEEE Transactions on Audio, Speech & Language Processing,
vol. 15, no. 3, pp. 982–994, 2007.

[2] J. Wu, E. Vincent, S. Raczynski, T. Nishimoto, N. Ono, and
S. Sagayama, “Multipitch estimation by joint modeling of har-
monic and transient sounds,” in IEEE Int. Conf. on Acoustics,
Speech & Signal Processing (ICASSP), Prague, Czech Repub-
lic, May 2011.

[3] P. Smaragdis and J. C. Brown, “Non-negative matrix factoriza-
tion for polyphonic music transcription,” 2003 IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics,
vol. 3, no. 3, pp. 177–180, 2003.
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