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ABSTRACT

In this paper, we propose a new technique for sparseness-

based underdetermined BSS that is based on the clustering of

the frequency-dependent time difference of arrival (TDOA)

information and that can cope with diffused noise environ-

ments. Such a method with an EM algorithm has already

been proposed, however, it required a time-consuming ex-

haust search for TDOA inference. To remove the need for

such an exhaust search, we propose a new technique by fo-

cusing on a stereo case. We derive an update rule for analyt-

ical TDOA estimation. This update rule eliminates the need

for the exhaustive TDOA search, and therefore reduces the

computational load. We show experimental results for sepa-

ration performance and calculation time in comparison with

those obtained with the conventional approach. Our reported

results validate our proposed method, that is, our proposed

method achieves high performance without a high computa-

tional cost.

Index Terms— Underdetermined blind source sepa-

ration, EM algorithm, speech sparseness, time-frequency

masking

1. INTRODUCTION

Blind Source Separation (BSS) has been intensively investi-

gated since this problem setting matches a real environment

very well. With overdetermined BSS, the source separation

can be performed satisfactorily, especially in a clean environ-

ment, for example by using Independent Component Anal-

ysis (ICA). To be able to handle a more realistic situation,

however, we must consider the underdetermined case, where

there are fewer sensors than sources.

Many methods have been proposed for underdetermined

BSS [1, 2, 3, 4, 5]. Most of there methods employ the

sparseness characteristics of the source signals. The energy

of the target signal concentrates on certain time-frequency

points, which defines sparseness. In particular with speech

in the time-frequency domain, it is approximately true ow-

ing to such factors as formants, harmonic structures, and

non-stationarity. If the time-frequency components of each

source signal are sparse, then these components rarely over-

lap even when many sources are mixed together [6], and

it can be assumed that at most one source is active at each

time-frequency slot. Time-frequency masking utilizes this

sparseness assumption, and aims at extracting the time-

frequency components dominated by each source. Such a

time-frequency mask can be built by performing a cluster-

ing operation on the source location information, such as

the TDOA, at all the time-frequency slots [1, 7]. However,

most of the separation methods based on the clustering of the

source location information tend to be weak with respect to

reverberation and background noises.

Recently, Izumi et al. [8] proposed a BSS method to

overcome this issue. They also relied on the TDOA for the

clustering, however, their method achieved high performance

even under noisy and reverberant conditions because they

considered the noise and reverberation in their microphone

observation model. The clustering was performed by using

the EM algorithm, however, there is a serious problem with

this approach, that is, it cannot analytically update the TDOA

parameter. In other words, their method required a time-

consuming exhaust search for the TDOA inference. This

problem has precluded wide use of this approach.

To remove the need for such an exhaust search, we pro-

pose a new efficient BSS algorithm. We derive an update rule

for TDOA parameter estimation in Izumi’s algorithm in an

analytical way. The new update rule eliminates the need for

the exhaust search of TDOA, and is therefore expected to re-

duce the computational load. Our experimental results show

that the proposed method can achieve the comparable per-

formance by greatly reducing the computational time under

noisy and reverberant conditions.
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2. CONVENTIONAL METHOD

This section outlines the method proposed by Izumi et al. [8]

and its problem.

Let xf,t = [xf,t,L, xf,t,R]
T

be signals observed by two mi-

crophones represented in the time-frequency domain. If we

assume that source signals are sufficiently sparse such that

only one source signal is active at each time-frequency point,

and each source signal is transferred as a plane wave, xf,t can

be written as

[
xf,t,L
xf,t,R

]
=

[
1

ej2πfδk

]
Sf,t,k +

[
Nf,t,L

Nf,t,R

]
(1)

xf,t = bf,kSf,t,k +Nf,t (2)

where k is the index of the source, Sf,t,k is the spectrum of

the source signal that is active at a time-frequency slot, bf,k is

the transfer function from the source to the microphones (δk
is the TDOA between two microphones), and Nf,t is the ob-

servation error, which includes reverberation and background

noise and is assumed to be independent of the source signals.

We assume that N is time-invariant and follows a Gaus-

sian distribution with a zero mean and a covariance matrix

σ2
fVf . Where σ2 is the noise power, and V is given as fol-

lows for the diffused noise

V(f) =

[
1 sinc(2πfD/c)

sinc(2πfD/c) 1

]
(3)

where c is the velocity of sound, and D represents the dis-

tance between the two microphones. The purpose of the con-

ventional method [8] and this paper is to estimate the source

signals Sf,t,k solely from the mixed observation xf,t.

The likelihood function for the observation xf,t is

p(xf,t|k, θ) = 1

2π
√
σ2
f |Vf |

exp

(
− 1

2σ2
f

NH
f,t,kV

−1
f Nf,t,k

)

(4)

Let θ = {σ2
f , δk, Sf,t,k} be the parameter set. The log

likelihood function is:

L =
∑
t

∑
f

log
∑
k

p(xf,t|k, θ)p(k|θ) (5)

where p(k|θ) is the mixing weight (
∑

k p(k|θ) = 1).

In [8], this log likelihood is maximized with the EM algo-

rithm. The parameters to be estimated are θ = {σ2
f , δk, Sf,t,k}

where k is the hidden variable and the auxiliary function in

this problem is

Q(θ|θ′) = E [log p(xf,t; θ)|θ′]
=

∑
t

∑
f

∑
k

mk,f,t log p(xf,t|k, θ)p(k|θ)(6)

where time-frequency maskmk,f,t is the posterior probability

that source k is active at a t-f slot, and θ′ is the parameter set

obtained by the previous iteration. mk,f,t is updated by:

mf,t,k = p(k|xf,t,k, θ
′) =

p(k|θ′)p(xf,t|k, θ′)∑
k p(k|θ′)p(xf,t|k, θ′) (7)

The parameters σ2
f and Sf,t,k are estimated by differen-

tiating the auxiliary function with respect to each parameter,

and setting them at zero,

σ2
f =

1

T

∑
t

∑
k

mf,t,kN
H
f,t,kV

−1
f Nf,t,k (8)

Sf,t,k =
bH
f,kV

−1
f xf,t

bH
f,kV

−1
f bf,k

, (9)

and the mixing weight p(k|θ) (where
∑

k p(k|θ) = 1) is cal-

culated by

p(k|θ) = 1

TF

∑
t

∑
f

mf,t,k (10)

where T and F are the number of time frames and frequency

bins, respectively.

In [8], as δk cannot be solved analytically, the update is

performed by calculating Q(θ|θ′) for all the discretized δk
and selecting δk that gives the maximum Q:

δk = argmaxδkQ(θ|θ′) (11)

This update rule has two problems. One is that the in-

ference of δk should always be discretized. Therefore, the

optimum value tends not to be obtained when using these dis-

cretized values. The other problem is that this exhaust search

requires a large computational cost. To overcome these prob-

lems, we derive an analytical update rule for estimating the

TDOA parameter δk.

3. PROPOSED METHOD

In this section, we provide an analytical update rule for the

TDOA parameter δk. By using the components of the vectors

x, b and the matrix V, the likelihood function (4) can be

rewritten as:

p(xf,t|k, θ) = 1

2π
√
σ2
f |Vf |

exp
(
C
)

· exp
( |ξf,t,k||Sf,t,k|
σ2
f (1− φ2)

cos(ψs − ψξ − 2πfδf,k)
)

(12)
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where φf = sinc(2πfD/c), ξf,t,k = [xf,t,R − φf (xf,t,L −
Sf,t,k)], C is independent of δf,k. ψSk

and ψξk represent the

phases of Sf,t,k and ξf,t,k, respectively.

The last term,

exp
( |ξf,t,k||Sf,t,k|
σ2
f (1− φ2)

cos(ψs − ψξ − 2πfδf,k)
)
, (13)

has the shape of the von Mises distribution [9]:

g(x|κ, μ) =
1

2πI0(κ)
eκ cos (x−μ) (14)

where −π < x ≤ π, μ is the mean of the distribution (−π <
μ ≤ π), κ > 0 is a concentration parameter, and I0(x) is

a modified Bessel function of the first kind and order zero.

That is, (13) means that the phase difference ψs − ψξ ≈
arg (xf,t,R)−arg (xf,t,L) has a von Mises distribution whose

mean value corresponds to the frequency-dependent TDOA

μ = 2πfδf,k, and the concentration parameter is the SNR

related 1 value κ =
|ξf,t,k||Sf,t,k|

σ2
f (1−φ2)

.

Therefore, we can derive the update rule for δk using a

similar method with the mixture model of the von Mises dis-

tribution. However, because the cosine-part of (13) depends

on the frequency f , we have to derive the update rule for δf,k
at each frequency, which is different from the previous fre-

quency independent update rule (11). By substituting (13)

into (6), and by setting ∂Q
∂δf,k

= 0, the update rule becomes:

2πfδf,k = arctan

∑
tmf,t,k|ξf,t,k||Sf,t,k| sin(ψξk − ψSk

)∑
tmf,t,k|ξf,t,k||Sf,t,k| cos(ψξk − ψSk

)
(15)

It should be noted that the function arctan(x) is unique

only if −π/2 < x < π/2. However, 2πfδf,k can fall in

the −π to π range. Therefore, when |x| ≥ π/2, we have to

modify the estimated value by checking the inflection point

of the auxiliary function. To accomplish this, we calculate the

second order differential of the auxiliary function, and modify

the values as follows:

• If δf,k < 0, ∂2Q
∂(δ2f,k)

≥ 0, then 2πfδf,k ← 2πfδf,k + π

• If δf,k > 0, ∂2Q
∂(δ2f,k)

≥ 0, then 2πfδf,k ← 2πfδf,k − π

• Otherwise, we do not modify 2πfδf,k

In summary, the proposed method estimates the parame-

ters σ2
f , Sf,t,k and mf,t,k in the same ways as described in

Section 2, and the TDOA parameter δf,k is calculated with

the update rule (15).

1When we assume that φf = 0,
|ξf,t,k||Sf,t,k|

σ2
f
(1−φ2)

=
|Sf,t,k|2

σ2
f

, which is

the SNR.

4. EXPERIMENTS

4.1. Experimental conditions

We performed experiments with measured impulse responses

in a room (Fig. 1) with a reverberation time of 130 ms. We

used two microphones, whose spacing was 4 cm. The num-

ber of sources K was K = 2 (70◦ and 150◦), or K = 3
(30◦, 70◦ and 150◦). Mixtures were formed by convolving

the measured room impulse responses and 5-second English

speech signals sampled at 8 kHz. The frame size and frame

shift for STFT were 64 ms and 16 ms, respectively.

The noise we used in our experiments was the Gaussian

noise of the zero mean and the covariance matrix of σ2
fVf ,

where Vf was given by (3), and σf was determined so that

the signal to noise ratio (SNR) with respect to source 1 has a

preset value.

The performance was evaluated in terms of the signal

to interference-plus-noise ratio (SINR) and the signal-to-

distortion ratio (SDR) [2]. For each K, 10 speaker combina-

tions were tested and the results were averaged.

We compared the performance and computational times

of the conventional and proposed methods. For the parameter

search with the conventional method, we changed the DOAs

of the sources from 0◦ to 180◦ in increments of 1◦ and pro-

vided the corresponding TDOA δk. We then performed an

exhaust search according to (11).

4.2. Results

Table 1 shows the experimental results, SINR, SDR and the

required computational time (Intel Xeon X5650 2.67 GHz (6

Core), dual).

We can see from Table 1 that our proposed method

achieves a comparable performance to the conventional ap-

proach and reduces the computational time by 1/10. This re-

sult shows that our proposed method can estimate the TDOA

parameter δk without using an exhaust search as with the

conventional method.

4.3. Influence of noise and reverberation

To investigate the influence of noise power and reverbera-

tion on separation performance, we also compared the per-

formance and computational times of the conventional and

the proposed methods by changing the SNR and reverbera-

tion time.

Table 2 shows the influence of the SNR on separation per-

formance. The number of sources K was 3 (30◦, 70◦ and

150◦), and the other conditions were the same as those in Sec-

tion 4.1. By adjusting the power of the noise σ2
f , the SNR was

set at 27.5 dB (= Table 1. (b)), 20 dB (Table 2. (a)), and 10
dB (Table 2. (b)).

Table 3 shows the influence of the reverberation time on

separation performance. The number of sources K was 3
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Room size: 
4.45 m × 3.55 m × 2.50 m

Reverberation time: 
130 ms

Sampling rate: 
8000 Hz

4 cm

Door

30 o

70o

15
0

o

Fig. 1. Experimental setup

Table 1. Source separation results

(a) K = 2 (70◦ and 150◦)
Method SINR SDR Calculation Time

Conventional 15.3[dB] 6.7[dB] 184.1[s]

Proposed 14.8[dB] 7.7[dB] 16.3[s]

(b) K = 3 (30◦, 70◦ and 150◦)
Method SINR SDR Calculation Time

Conventional 7.8[dB] 5.4[dB] 201.8[s]

Proposed 6.7[dB] 5.9[dB] 24.7[s]

(30◦, 100◦ and 135◦), and the other conditions were the same

as those in Section 4.1. The reverberation time was set at 130
and 300 ms.

We can see from Tables 2 and 3 that our proposed method

achieves comparable performance, reducing the computa-

tional time, regardless of the SNR and reverberation time.

5. CONCLUSION

This paper proposed a new method for sparse source sepa-

ration in noisy and reverberant conditions. We provided an

analytical update rule for estimating the TDOA parameter,

which is estimated by using an exhaust search in the conven-

tional approach. We confirmed that our proposed method can

achieve comparable performance by reducing the computa-

tional time drastically, regardless of the power of noise. We

plan to evaluate our method in a real environment, and to in-

troduce a noise model appropriate for reverberation.
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