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ABSTRACT

We propose a sparse vector factorization (SVF) approach for blind
source separation, which inherently avoids the permutation problem.
The SVF assumes the sparseness of sources, and defines a sparse
vector (SV) that consists of the locational and spectral features of
each source at all the frequencies. Then, by assuming that the loca-
tional and spectral SVs are generated by frequency-independent pa-
rameters, the method executes the SVF. Our locational feature is the
phase difference (PD) between two microphone observations, and
we model it with a frequency-independent time-difference of arrival
(TDOA) parameter. Moreover, we employ the wrapped-phase GMM
in order to take the spatial aliasing problem into account. On the
other hand, the spectral feature is the log spectrum, and we provide
a prior for a spectral parameter. The SVF is formulated with a maxi-
mum a posteriori (MAP) estimation framework, where the locational
and spectral parameters are inferred by the EM algorithm. Experi-
mental results show that our proposed method can separate signals
successfully even for an underdetermined case.

Index Terms— Source separation, sparse sources, vector fac-
torization, log spectrum, EM algorithm

1. INTRODUCTION

Blind source separation (BSS) is an approach for estimating source
signals based only on the mixed signal information observed at each
microphone. For the underdetermined BSS, time-frequency (t-f)
mask based approaches that cluster the t-f components according
to the sparseness of sources have been widely studied (e.g., [1–3]).
Most of the t-f mask approaches employ a two-stage approach: the
first stage relies on the source locational features and separates the
signals by clustering the t-f components at each frequency bin, and
then the second stage solves the permutation problem among fre-
quencies, utilizing the source locational or spectral information. The
permutation solution in the second stage usually requires an addi-
tional effort to obtain high separation performance.

This paper proposes an approach that inherently prevents the
permutation problem. We refer to our method as the sparse vector
factorization (SVF). The sparse vector (SV) consists of the locational
and spectral features of each source at all the frequencies, which are
generated by frequency-independent parameters (see Fig. 1). The
SVF is an extention of the t-f component clustering, by which a pair
of frame-wise observation vectors are factorized into SVs of indi-
vidual sources based on the frequency independent parameters, and
thus it does not cause the permutation problem. Moreover, this ap-
proach realizes high-performance BSS because the method relies on
both the locational and spectral features.

The SVF is not a completely new idea, and indeed the same
kind of ideas have already appeared in existing methods [4, 5]. The
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Fig. 1. Concept of SVF at a time frame n, where �sn,m and �an,m

are spectral and locational sparse vectors (SVs), respectively, and
im and μm are frequency-independent parameters for a source m.
“n/o” means “not observed”.

method in [4], utilized only the locational SVs of sources. To han-
dle all the frequency components simultaneously, we modeled the
phase difference (PD) between two microphone observations with
a frequency-independent time-difference of arrival (TDOA) param-
eter. A phase wrapping problem of the PD in case of spatial alias-
ing was also considered by exploiting the wrapped-phase GMM [6].
Thanks to this modeling, the method [4] can cluster the t-f com-
ponents without encountering the permutation problem even for an
underdetermined case where the spatial aliasing occurs. However,
since this method relies only on the locational information, perfor-
mance at the frequencies where the PD of two sources lap over each
other was insufficient.

In the other method [5] based on the SVF concept, we showed
how we can simultaneously cluster both the locational and spectral
SVs. With this method, the variance of the spectral SV was mod-
eled with a common amplitude modulation (AM) parameter which
is shared by all the frequency components. However, because this
spectral modeling was too naive to describe the fine structure of
sources, e.g., speech signals, it was difficult to apply this method
to an underdetermined case.

This paper proposes an SVF method that overcomes the above-
mentioned shortcomings of [4, 5]. With the proposed method, the
locational model follows that in [4], and the spectral model employs
a more elaborate one. In concrete terms, the prior of the spectral
SV is provided by a log spectral model that is capable of describing
the fine structure of the speech signals (e.g., [7, 8]). The log spectral
prior is given by an offline training. The SVF will be formulated
with a maximum a posteriori (MAP) estimation framework, where
the locational and spectral parameters are inferred by the EM algo-
rithm. The experimental results show that our proposed method can
separate speech signals even for an underdetermined case, and even
at the frequencies where the PDs of two sources overlap due to the
spatial aliasing.
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2. PROBLEM DESCRIPTION

Suppose that n(= 1, ..., Nn) and f(= 1, ..., Nf ) are time and
frequency indices of a t-f slot, and that Ns ≥ 2 speech signals
sn,f,1, · · · , sn,f,Ns are mixed and observed at Nm microphones,

xn,f,l =
PNs

m=1 hf,l,msn,f,m, (1)

where hf,l,m is the frequency response from source m to micro-
phone l, sn,f,m is the STFT of a source sm(t), f ∈ {0, 1

Nf
fs, . . . ,

Nf−1

Nf
fs} is a frequency (fs is the sampling frequency) and n ∈

{0, · · · , Nn − 1} is a time-frame index. In this paper, without loss
of generality, we handle a stereo case Nm = 2.

The separated signals yn,f,m are obtained with t-f masks
Mn,f,m, which extract t-f points of the m-th source:

yn,f,m = Mn,f,mxn,f,1. (2)

To estimate the t-f masks Mn,f,m, this paper assumes the sparse-
ness of the sources [1], that is, at most one source is dominant at each
t-f slot. With this assumption, we rewrite (1) as follows:

sn,f,m =

j
xn,f,1 for m = ln,f

0 for m �= ln,f
(3)

where ln,f is the dominant source index at the t-f slot (n, f). In (3),
we assume that |hf,1,m| = 1 and arg (hf,1,m) = 0, without loss of
generality.

3. SPARSE VECTOR FACTORIZATION (SVF)

In this paper, the locational feature is the PDs between two chan-
nels An,f = arg [

xn,f,2
xn,f,1

], and the spectral feature is the complex

spectrum Xn,f = xn,f,1. We also define the observation vectors
�An and �Xn (see Fig. 1), where a vector�·n consists of ·n,f at all the
frequencies at frame n.

Letting θA and θX be a set of locational and spectral model pa-
rameters (detailed in the following subsections), respectively, and
{�·n} be a set of vectors �·n for all the time frames, we model the
observation vectors �Xn and �An with a mixture model:

p({ �Xn}, { �An}, θX , θA)

=
Y
n,f

MX
m

p(Xn,f , An,f |m, θX , θA)p(θX)p(θA)p(m) (4)

where we denote “ln,f = m” by “m”, and p(m) is the mixture
weight (

P
m p(m) = 1). Assuming that Xn,f and An,f are mutu-

ally independent given m, we write p(Xn,f , An,f |m, θX , θA) as

p(Xn,f , An,f |m, θX , θA) = p(Xn,f |m, θX) · p(An,f |m, θA) (5)

where p(Xn,f |m, θX) and p(An,f |m, θA) are the spectral (Sec. 3.1)
and the locational model (Sec. 3.2), respectively. Moreover, p(θX)
and p(θA) are the prior for the locational and spectral model param-
eters, respectively. l

3.1. Spectral model

3.1.1. Source and observation models

This section defines the spectral model p(Xn,f |m, θX). From the
sparseness assumption (3), the complex spectrum of each source
�sn,m becomes a sparse vector. That is, �sn,m is the spectral SV (see
Fig. 1). We model sn,f,m with a complex Gaussian distribution Nc:

p(sn,f,m) = Nc(sn,f,m; 0, γ2
n,f,m) (6)

where γ2
n,f,m is the variance of the source spectrum E[|sn,f,m|2]

at each t-f point. Moreover, we interpret the sparseness assumption

in (3) as follows: two types of observations, xn,f,1 and zeros, are
always obtained simultaneously in relation to the dominant source
and the other non-dominant sources. This interpretation can be rep-
resented by

p(Xn,f |m, θX) = p(sn,f,m = xn,f,m)

MY
m′ �=m

p(sn,f,m′ = 0) (7)

The derivation of this model and its generative model can be found
in [5].

3.1.2. Spectral variance prior with a GMM

In our previous paper [5], we model the spectral variance γ2
n,f,m by

considering a common AM structure across frequencies:

γn,f,m = |Xn,f |γ′
n,m, (8)

where γ′
n,m is the time-variant spectral envelope which models the

synchrony across frequencies, and |Xn,f | represents the spectral fine
structure. This model was really naive, and therefore, it was difficult
to apply this model to the case of Ns ≥ 2.

Instead of using this naive model, this paper proposes to utilize a
more elaborate model with a log spectral model. First, we introduce
a log spectral parameter

ρn,f,m = log(γ2
n,f,m), (9)

and consider a vector �ρn,m in order to model the source spectrum.
Moreover, we provide a prior p(θX) = p(�ρn,m) for this log spectral
parameter at each source m with a mixture of I Gaussians:

p(�ρn,m)=

IX
im

p(�ρn,m|im)p(im)

=

IX
im

p(im)
Y
f

N(ρn,f,m; νf,im , vf,im) (10)

where the mean νf,im , the variance vf,im , and the weight p(im) are
trained in advance.

Note that the SVs, sn,f,m for all f , depend on the Gaussian
index im according to (6), (9), and (10), and thus im is the frequency
independent parameter for the SVs.

3.2. Locational model

This section defines the locational model p(An,f |m, θA). We as-
sume that all sources are located at different locations, and thus have
different PDs. We write the PD of each source by an,f,m. From the
sparseness assumption (3), we also assume that the PD an,f,m of the
dominant source m is observed as An,f , and other PDs an,f,m′ �=m

are not observed as shown in Fig. 1. That is, a vector �an,m is the
locational SV and

p(An,f |m, θA) = p(an,f,m = An,f |θA).

We provide a model for p(an,f,m|θA) by using a frequency inde-
pendent mean μm and variance σ2

m, where μm corresponds to the
expectation value of the TDOA. Moreover, to consider the spatial
aliasing issue as in [4], we employ a mixture of wrapped Gaussian
distributions [6]. Our locational model is

p(an,f,m|θA) =
KX

k=−K

p(an,f,m|k, θA)p(k)

p(an,f,m|k, θA)=
1√

2πσ2
m

e

 
−(an,f,m+2πk−2πfμm)2

2σ2
m

!
, (11)
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where −π ≤ an,f,m < π, the integer k is a phase wrapping index
which will be handled as an hidden variable, and K is the maximum
wrapping index which can be determined from the microphone spac-
ing and the sampling frequency [4]. In this paper, we disregard the
prior p(θA) in (4).

3.3. EM algorithm for likelihood maximization

This section provides the optimization algorithm. Let θ = {μm, σ2
m,

�ρn,m, p(m)} be a model parameter set. In the following, the dom-
inant source index m, indices of Gaussians for source log spectra
{im} = {i1, · · · , iM}, and the phase wrapping index k are dealt
with as hidden variables.

The cost function of the MAP estimation is defined based on a
log of a joint probability density function as:

L(θ) = log p({ �Xn}, { �An}, θ)

=
X
n,f

X
m

X
k

X
{im}

log p(Xn,f , An,f , m, k|{im}, θ)p({im})p(θ).

The above cost function can be maximized by using the EM algo-
rithm. Note that the posterior of the dominant source index m calcu-
lated in the E-step decides how the observation vectors are factorized
into the SVs. The auxiliary function Q is given as 1

Q=
X
n,f

X
m

X
k

X
{im}

q(m, k, {im}) ·

log [p(Xn,f , An,f , m, k|{im}, θ)p({im})p(θ)] (12)

=
X
n,f

X
m

X
k

gn,f,m,k log p(Xn,f , An,f |m, k, θ)p(m)p(k)

+
X

n

X
m′

X
im′

zn,im′ log p(�ρn,m′ |im′
)p(im

′
),(13)

where q(m, k, {im}) = p(m, k, {im}|Xn,f , An,f , θ) is the poste-
rior

q(m, k, {im}) = gn,f,m,k

Y
im

zn,im

gn,f,m,k = p(m, k|Xn,f , An,f , θt)

zn,im = p(im|�ρn,m),

and we define

Gn,f,m = p(m|Xn,f , An,f , θt) =
X

k

gn,f,m,k. (14)

In the above equations, Gn,f,m corresponds to the posterior of
source m being dominant at a t-f slot (n, f), and zn,im is the
frequency-independent posterior of p(im) which indicates that the
im-th Gaussian component is selected for source m at time slot n.

The Q function is maximized by iterating the following E- and
M- steps.
E-step: The posterior values are calculated in the E-step:

gn,f,m,k =
p(Xn,f |m, θ)p(An,f |m, k, θ)p(m)p(k)P

m

P
k p(Xn,f |m, θ)p(An,f |m, k, θ)p(m)p(k)

(15)

zn,im =
p(�ρn,m|im)p(im)P
im p(�ρn,m|im)p(im)

(16)

M-step: In the M-step, the parameter θ = {μm, σ2
m, ρn,f,m, p(m)}

are updated so that the Q function is maximized. The update rules
for the locational parameter, μm and σ2

m can be derived simply set-
ting the first derivative of Q with respect to the parameters to zero,
and they can be found in [4].

1The tips for derivation from (12) to (13) can be found in Appendix.

On the other hand, the update rule for the spectral parameter
ρn,f,m is not such simple, because we are considering the prior (10).
Therefore, we discuss how we can update the spectral parameter.
When we use (9) and the sparse observation model (7), the Q func-
tion related to the parameter ρn,f,m becomes

Q′ =
X
n,f

X
m

„
−Gn,fm|Xn,f |2

exp(ρn,f,m)
− ρn,f,m

«

+
X
n,f

X
m

X
im

zn,im

„
− (ρn,f,m − νn,f,im)2

2vn,f,im

«

By setting ∂Q

∂ρ2
n,f,m

= 0, we obtain a equation:

Gn,f,m|Xn,f |2
exp(ρn,f,m)

− ρn,f,m

X
im

zn,im

vn,f,im
+

 X
im

zn,imνn,f,im

vn,f,im
− 1

!
= 0 (17)

As this function has a shape of a hinge function with respect to
ρn,f,m, the spectral parameter ρn,f,m can be obtained with the
Newton-Raphson method. In our implementation, the Newton-
Raphson method converged within three iterations in each E-M
update.

The mixture weight p(m) is updated as follows:

p(m) =

P
n,f Gn,f,m

NnNf
, (18)

where Nn and Nf are the numbers of time frames and frequency
bins, respectively. l

3.4. Source Separation

The t-f mask Mn,f,m in (2) for the m-th separated source is obtained
by the posterior (14), that is, Mn,f,m = Gn,f,m. The separated
signal is obtained by

yn,f,m = Gn,f,mxn,f,1. (19)

4. EXPERIMENTS

4.1. Experimental setup

We utilized two microphones whose spacing was 20 cm, that is, the
spatial aliasing problem does occur over 850 Hz. The source sig-
nals were 5-second Japanese speech signals of two males and two
females, sampled at 16 kHz. The number of sources Ns = 2 or 3
was always given in the experiments, and the source positions were
45◦ and 150◦ for Ns = 2 and 25◦, 90◦ and 150◦ for Ns = 3. In this
paper, we only considered an anechoic case, i.e., we gave the corre-
sponding delays to the sources to obtain the mixtures. The frame
size for STFT was 512 (32 ms), and the frame shift was 128 (8 ms).

The separation performance was evaluated with the signal-to-
interference ratio (SIR) as a measure of separation performance, and
the signal-to-distortion ratio (SDR) as a measure of sound quality.
Their definitions can be found in [9]. We performed six speaker
combinations and then averaged the results. The number of the iter-
ation for the EM algorithm was 15.

For the training of the log spectral prior, we utilized 143 sen-
tences for each speaker, where each sentence lasted from 4 to 8 secs. .
The number of the Gaussian component I = 32. The model was the
speaker dependent in this paper.

4.2. Results

Figure 2 shows example spectra of the separated signals (A) without
and (B) with the spectral model. In Fig. 2 (A), the separation was
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(A) Without the spectral model [4] (B) With the spectral model (proposed)

 time (sec) 

 fr
eq

ue
nc

y 
(H

z)
 

0.5 1 1.5 2 2.5
0

2000

4000

6000

8000

 time (sec) 

 fr
eq

ue
nc

y 
(H

z)
 

0.5 1 1.5 2 2.5
0

2000

4000

6000

8000

 time (sec) 

 fr
eq

ue
nc

y 
(H

z)
 

0.5 1 1.5 2 2.5
0

2000

4000

6000

8000

 time (sec) 

 fr
eq

ue
nc

y 
(H

z)
 

0.5 1 1.5 2 2.5
0

2000

4000

6000

8000

 time (sec) 

 fr
eq

ue
nc

y 
(H

z)
 

0.5 1 1.5 2 2.5
0

2000

4000

6000

8000

 time (sec) 

 fr
eq

ue
nc

y 
(H

z)
 

0.5 1 1.5 2 2.5
0

2000

4000

6000

8000

Fig. 2. Spectral examples of the separated signals with and without the spectral model (Ns = 3).

Table 1. Separation results [dB]. The input SIR was 0 [dB] and
−3.0 [dB] for Ns = 2 and Ns = 3, respectively.

Ns = 2 Ns = 3
SIR SDR SIR SDR

PD only [4] 14.89 15.81 11.80 11.87
Naive spectral model [5] 13.38 14.15 5.25 8.44
Proposed 15.66 15.96 12.48 12.18

achieved with only the PD clustering as in [4]. We can see many
horizontal-striped components at the frequencies where the PD of
sources lapped over each other due to the spatial aliasing. On the
other hand, thanks to the spectral model with the spectral prior, such
a horizontal-striped parts are decreased in Fig. 2 (B), especially in
the regions indicated by rectangles.

Table 1 summarizes the separation performance with the PD
only [4], the naive spectral model (8) [5], and the proposed SVF.
With the naive spectral model, performance is insufficient especially
for the underdetermined case Ns = 3. We observed that separation
performance of one of three sources is very poor due to the insuffi-
cient solution of the permutation, or sometimes the power of one of
three separated signals became very small. The latter comes from
the sparse observation model (7), which has high likelihood when
only one source has a large variance and the others are zero. On
the other hand, by using the proposed method, we can obtain good
separation results even for the underdetermined case Ns = 3. With
the proposed method, we did not observe the phenomenon that one
of three separated signals became very small. Moreover, the spec-
trum at the lapped PDs was refined to the degree of shown in Fig. 2.
We can conclude that, the proposed method can achieve the better
performance than the previous methods.

5. CONCLUSION

We proposed a new approach, the sparse vector factorization (SVF),
that inherently prevents the permutation problem. The method uti-
lized the wrapped-phase GMM to model the locational SV, and the
source log-spectral model for the spectral SV. In the model, the prior
of the log spectral model was also employed. From the results ob-
tained with the simulated experiments, we confirmed that the pro-

posed SVF can separate signals successfully even for an underdeter-
mined case. We also showed that the proposed method improved the
separation performance at the frequencies where the PDs of sources
overlap due to the spatial aliasing.

Our future study include an evaluation with a speaker indepen-
dent spectral prior, and the investigation for echoic scenarios, where
the observed signals should contain some distortion that is not exist
in the spectral prior.

6. APPENDIX

The logarithm term in (12) can be written from (4) and (10) as:

p(Xn,f , An,f |m, k, θ)p(m)p(k)
Y

{im}
p(ρn,f,m|im)p({im}),

where p(Xn,f , An,f |m, θ) is given by (5), (7) and (11), and
p(ρn,f,m|im) = N(ρn,f,m; νn,f,im , vn,f,im )

(see (10)). By using the posterior in Section 3.3 and the above equations, we
can derive (13).

7. REFERENCES

[1] O. Yilmaz and S. Rickard, “Blind separation of speech mixtures via
time-frequency masking,” IEEE Trans. Signal Processing, vol. 52, no.
7, pp. 1830–1847, July 2004.

[2] Y. Izumi, N. Ono, and S. Sagayama, “Sparseness-based 2ch BSS using
the EM algorithm in reverberant environment,” in Proc. WASPAA2007,
2007, pp. 147–150.

[3] H. Sawada, S. Araki, and S. Makino, “A two-stage frequency-domain
blind source separation method for underdetermined convolutive mix-
tures,” in Proc. WASPAA2007, 2007, pp. 139–142.

[4] S. Araki, T. Nakatani, H. Sawada, and S. Makino, “Stereo source sep-
aration and source counting with MAP estimation with Dirichlet prior
considering spatial aliasing problem,” in Proc. ICA’09, 2009, vol.
5441/2009, pp. 742–750.

[5] S. Araki, T. Nakatani, and H. Sawada, “Sparse source separation based
on simultaneous clustering of source locational and spectral features,”
Acoustical Science and Technology, vol. 32, no. 4, pp. 161–164, 2011.

[6] P. Smaragdis and P. Boufounos, “Learning source trajectories using
wrapped-phase hidden Markov models,” in Proc. of WASPAA’05, oct
2005, pp. 114–117.

[7] T. Kristjansson and J. Hershey, “High resolution signal reconstruction,”
in Proc. ASRU, 2003, pp. 291–296.

[8] K. Wilson, “Speech source separation by combining localization cues
with mixture models of speech spectra,” in Proc. of ICASSP 2007, 2007,
vol. I, pp. 33–36.

[9] S. Araki, H. Sawada, R. Mukai, and S. Makino, “Underdetermined blind
sparse source separation for arbitrarily arranged multiple sensors,” Sig-
nal Processing, vol. 77, no. 8, pp. 1833–1847, Aug 2007.

268


