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ABSTRACT

A single-microphone speech separation framework based on condi-
tional random fields (CRFs) is proposed in this paper. Unlike fac-
torial HMM, CRF does not have the conditional independence as-
sumption on observations, thus different types of observations from
the speech mixture can be integrated into the models through feature
functions. Similar to factorial HMM, there is the statistical indepen-
dence assumption on sources. Under this assumption, the two-source
single-microphone speech separation problem can be expressed by
two independent linear-chain CRFs. The separation problem be-
comes two pattern recognition problems, with respect to CRF mod-
els of the two sources. Experimental results show that by integrating
initial separation outputs from factorial HMM with log power spec-
trum, fundamental frequency and speaker likelihoods of the mixture,
CRF separation framework consistently improves the results from
factorial HMM in terms of SNR, segmental SNR and PESQ.

Index Terms— speech separation, conditional random fields

1. INTRODUCTION

Single-microphone speech separation problem is to reconstruct the
sources from only one speech mixture. In the two-source case,
speech mixture y is modeled as the addition of two independent
sources s1 and s2, i.e. y = s1+s2. The problem is the extreme case
of under-determined source separation, which is no unique solution
for source reconstruction.

Model-based method is one of the approaches to the problem
[1]. The sources are modeled by statistical models. Factorial HMM
has been proposed for efficient computation, with the assumptions
on statistical independence between the sources and conditional in-
dependence on observations [2]. Various observations from mixture
and sources are useful for separation. However, they may differ in
dimension, dynamic range and representation format. They may be
highly dependent, for example they are originated from the same fre-
quency spectrum. These make the integration into factorial HMM
difficult.

Conditional Random Field (CRF) is a discriminative probabilis-
tic framework [3]. It is a Markov Random Field (MRF) conditioned
on the observations. It does not require the conditional independence
assumption on observations. Highly correlated observations can be
integrated into CRFs straightforwardly, such that the model is more
descriptive than conventional HMM. Direct modeling like CRFs also
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express the problem more naturally. The problem statement of a two-
source case is “given the observations of a speech mixture, to find the
most probable sources”, in contrast to “given all the source pairs, to
find the most probable pair which generates the observations of the
speech mixture” in a generative approach like factorial HMM.

A CRF based separation framework is proposed in this paper.
The initial separation outputs from factorial HMM are integrated
with observations such as log power spectrum, fundamental fre-
quency and speaker likelihoods of the speech mixture to obtain
improved separation results. The paper is organized as follows.
Section 2 provides the background of speech separation and facto-
rial HMM. The formulation of the separation problem into CRFs is
discussed in Section 3. Observations extracted for CRF separation
framework are described in Section 4. Experimental results are
shown in Section 5. Finally, Section 6 concludes the paper.

2. SINGLE-MICROPHONE SEPARATION WITH
FACTORIAL HMM

2.1. Signal interaction model

Let ŷt, ŝ1,t and ŝ2,t be the D-dimensional log power spectra of the
mixture and the two sources respectively at frame t. For each fre-
quency component d, ŷt is expressed as

ŷd
t = log(eŝ

d
1,t + eŝ

d
2,t + 2e

1
2
(ŝd1,t+ŝd2,t) cos(θdt )) (1)

with θdt as the phase difference between the two sources. Assuming
θdt is uniformly distributed, E(cos(θdt )) = 0. Hence,

log(E(eŷd
t )) = log(eŝ

d
1,t + eŝ

d
2,t) ≈ max(ŝd1,t, ŝ

d
2,t) (2)

by soft-maximum approximation. This is equivalent to MIXMAX
model [4], which is the non-linear MMSE estimator of ŷt [5].

2.2. Factorial HMM for source separation

For the two-source case, the source signals ŝk = {ŝk,t : t ∈ T},
k ∈ {1, 2} of length T are represented by the state sequences mk =
{mk,t : t ∈ T} of two independent Markov processes Mk. Let
O = {Ot : t ∈ T} be observations, the maximum likelihood esti-
mation of the state sequences of the sources is obtained as

(m∗
1,m

∗
2) = arg max

m1,m2

p(O|m1,m2) (3)

by a generative approach. The decoding can be done by the Viterbi
algorithm. An illustration of factorial HMM is shown as in Figure
1. At frame t, mixture ŷt is emitted as the observation Ot from the
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interaction of unobserved sources ŝk,t. ŝk,t are generated from the
given states mk,t with emission probability densities p(ŝk,t|mk,t).
If each density is a Gaussian distribution N (μk,t,Σk,t) with a di-
agonal covariance matrix Σk,t, the probability density of ŷt can
be approximated as N (max(μ1,t, μ2,t),Σt), where max(·) is an
element-wise operator, Σd

t ≈ Σd
1,t if μd

1,t > μd
2,t for dimension d,

and Σd
t ≈ Σd

2,t otherwise for computational tractability. The transi-

tion probability from state mk,t−1 = i to mk,t = j is Uk
ij .

1M

2M

1,1m 2,1m 3,1m 4,1m

1O 2O 3O 4O

1,2m 2,2m 3,2m 4,2m

max max max max

1,1ŝ

1,2ŝ

2,1ŝ 3,1ŝ 4,1ŝ

2,2ŝ 3,2̂s 4,2ŝ

Fig. 1. Factorial HMM with MIXMAX as interaction function.

3. CONDITIONAL RANDOM FIELDS

3.1. Formulation of conditional random fields

Conditional random fields (CRFs) directly model p(m|O), the pos-
terior probability distribution of state sequence m = {mt : t ∈ T},
given observations O. Figure 2 illustrates a linear chain CRF. The
vertices that are dependent of each other are connected by edges. For
linear-chain CRFs, p(m|O) depends on only three types of cliques
(complete sub-graphs) under Hammersley-Clifford theorem [6]: cur-
rent observations and state, previous and current states, current and
next states. By introducing feature functions fi(m,O, t) with as-
sociated weights λi for each clique i, p(m|O) can be defined as a
log-linear distribution over the frame indices,

p(m|O) =
exp

∑
t

∑
i λifi(m,O, t)

Z(O)
. (4)

Z(O) =
∑

m

(
exp

∑
t

∑
i λifi(m,O, t)

)
is a normalizing con-

stant summing over all possible state sequences m to form a valid
probability distribution.

2O 3O

1m 2m 3m

1O

Fig. 2. A graph of linear-chain CRF. Pairs of states (m1,m2);
(m2,m3); and every pair of state and observation vertices
{(mt, Ot)}, t = {1, 2, 3} form the cliques.

In training process, the optimal weights are obtained by mini-
mizing the negative conditional log-likelihood − log p(m|O) over a
set of training data X with R sequences, X = {(mr,Or)}Rr .

Lλ =
∑
r

[(
−
∑
t

∑
i

λifi(mr,Or, t)

)
+logZ(Or)

]
+c‖λ‖22,

(5)
c‖λ‖22 is a �2-norm regularization term added to avoid over-training.
The level of regularization is controlled by the constant c. The objec-
tive function is convex. Globally optimal solutions can be obtained
by gradient descent methods for large-scale problems.

In decoding process, the optimal state sequence m∗ maxi-
mizes the conditional log-likelihood with the trained λi, m∗ =

2,1m 3,1m 4,1m1M

2M 1,2m 2,2m 3,2m 4,2m

1O 2O 3O 4O

1,1m

Fig. 3. Single-microphone separation problem expressed as two in-
dependent linear-chain CRFs sharing the same observations.

argmaxm

∑
t

∑
i λifi(m,O, t), by ignoring the constant term

Z(O). It can be found by the Viterbi algorithm.

3.2. Modeling speech separation problem with CRF

The two-source separation problem is formulated with the CRF
framework. The sources are represented by independent Markov
processes Mk as in factorial HMM, but instead of the generative
approach, a direct model approach is applied as follows,

(m∗
1,m

∗
2) = arg max

m1,m2

p(m1,m2|O) (6)

We have p(m1,m2|O) = p(m1|O)p(m2|O) given the statis-
tical independence assumption of sources. The separation problem
becomes two training and decoding problems for two independent
CRFs, each corresponding to one source. The two sources are asso-
ciated with the same observations O from the speech mixture.

The problem is illustrated by the graph in Figure 3. For each
source k, the state sequence mk is associated with vertices {mk,t}.
The vertices {Ot} represent observations from the speech mixture.
There are edges between {Ot} and {mk,t}, {mk,t−1} and {mk,t},
showing that they are dependent to each other. There is no edge be-
tween {m1,t} and {m2,t}, indicating the independence assumption.
Dotted edges at observation vertices {Ot} indicate they are either
dependent or independent of each other. The graph can be split into
two linear-chain CRF subgraphs, which share the same observation
vertices {Ot}, as indicated in the shaded region.

A Gaussian distribution set Gk = {N (μk,g,Σk,g) : g ∈ G}
with G members, is defined to model p(ŝk,t|mk,t), the emission
probability densities of log power spectra of source signals ŝk,t for
each k. Source label sets {g : N (μk,g,Σk,g) ∈ Gk} are defined to
represent the states mk,t with the corresponding emission probabil-
ity densities of ŝk,t, in a state sequence mk at frame t. The source
labels are the output of the CRF separation framework.

4. FEATURES FOR CRF SEPARATION FRAMEWORK

4.1. Observations of CRF models

An attribute is a variable describing a property of the speech mixture.
Without the conditional independence assumption on observations,
an observation modeled by CRF can be an attribute of current frame
or a concatenation of attributes from the previous frames up to his-
tory length t−n. This is especially useful in modeling speech signals
for speech separation. Observations from previous frames may pro-
vide hints for estimating the sources in the current frame. This type
of frame dependency is difficult to be modeled with factorial HMM.

Table 1 shows different types of observations being considered
in this paper. Log power spectra of speech mixture are modeled with
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Table 1. Observations of CRF framework for single-microphone speech separation problem of two sources.

Category Description Attribute ID Hist. up to
Log power spectra of
mixture

Log power spectra of mixture quantized to one of 2048
clusters of multivariate Gaussian distribution

Cluster index, from 1 to
2048

LS2048 t− 4

Outputs of factorial
HMM

Log power spectra of sources represented by output
states estimated by factorial HMM from speech mixture

Source labels of output states,
from 1 to G = {16, 128, 512}

GMMOut t− 4

Speaker log-likelihood
difference

Computed from speech mixture ŷt by speaker
dependent GMM

clipped at [−100, 100],
with interval of 10

SPKR t− 0

Fundamental frequency
of mixture

Fundamental frequency observed in speech mixture, if
available

50 Hz-1 kHz, with 5 Hz
interval, 0 if unobserved

F0 t− 1

concatenation of attributes from previous n frames, in contrast to
factorial HMM, which the observation ŷt is only from current frame.
For the computation efficiency, the log power spectra are quantized
into one of Gaussian distribution clusters described in Section 5.1
and the history length n = 4 is chosen.

The optimal state sequences from factorial HMM are considered
as indirect observations of the mixture. By incorporating the results
from other separation processes, the CRF framework is implemented
as a fusion system. Observations are formed by concatenating the
indices associated with the output states up to previous 4 frames.

Human listeners rely on speaker identity for attending to tar-
get speaker in multi-talker condition. Speaker information can be
provided by measuring speaker log-likelihood. If the frame is domi-
nated by both speakers, the log-likelihood difference is close to zero.
For the frames dominated by single speaker, the positivity or nega-
tivity of the log-likelihood difference indicates the speaker identity.

Fundamental frequency of the speech mixture is extracted if it
is observed. It provides complementary acoustic information of the
speakers. Many frames in the mixture are dominated by only one
speaker. The observed fundamental frequency is the same as the
fundamental frequency of the corresponding speaker. If the frame
contains more than one speaker, fundamental frequency is either un-
observed or out of the normal ranges of the speakers.

4.2. Feature functions

Feature functions are used to integrate observations into CRF mod-
els. Two types of feature functions are defined: the state feature
function and the transition feature function. The state feature func-
tion describes the relationship between the current observations and
the source label. For example, consider a training data at frame t:
the jth observation in the speech mixture is fundamental frequency
of 150 Hz and the label of source 1 is 10.

fi(m,O, t) =

{
1, if Oj

t = 150 and m1,t = 10

0, otherwise
(7)

The transition feature function describes the relationship be-
tween two adjacent source states. Following the previous example,
the label of source 1 at frame t− 1 is 9.

fi+1(m,O, t) =

{
1, if m1,t−1 = 9 and m1,t = 10

0, otherwise
(8)

All observations are discrete in value and all feature functions in
this paper are binary-valued at {0, 1} although these are not require-
ments of CRF. A feature function can be considered as a count on
the observed feature. Discrete observations facilitate this counting
process.

∑
t fi(m,O, t) in Equation 4 is equivalent to occurrence

frequency. The training process thus depends on sufficient statistics.

5. EXPERIMENTS

5.1. Experimental setup

Speech materials from 3 male and 3 female speakers from the GRID
Corpus are selected for the experiments [7]. There are 500 unique ut-
terances for each speaker. The speech materials are mixed into 3 sets
of speech mixtures, at SNR1 of 0 dB. In each set, there are around
2000 speech mixtures mixed from 450 utterances for training. An-
other 2500 speech mixtures are generated from the remaining 50
utterances for evaluation. Details of speech mixture sets are given in
Table 2. The speech materials are re-sampled at 16 kHz. Short-time
analysis is applied with Hamming window of 32 ms and frame shift
of 10 ms. 257-dimension log-power spectrum is obtained after 512-
point fast Fourier transform and logarithm on the power spectrum of
each frame. Speaker-dependent GMM are trained from log power
spectra of the same 450 utterances with 16, 128 and 512 GMM mix-
tures for each speaker.

Table 2. Configuration and speaker ID of 3 sets of speech mixtures.

Male+Male Male+Female Female+Female
Speaker 1 1 (Male) 17 (Male) 24 (Female)
Speaker 2 2 (Male) 18 (Female) 25 (Female)

For a GMM with high dimensionality, the training process of
GMM can be considered as a clustering process, since most proba-
bility mass is concentrated on one Gaussian distribution when it is
applied to a sample [8] . The dimensionality of a speaker-dependent
GMM is high enough to be viewed as clusters of G multivariate
Gaussian distribution if the mixture weights are ignored. The log
power spectra of each set of speech mixtures are clustered in the
similar manner, for the observations listed in Table 1.

Factorial HMM decoding are performed on the speech mixtures
of each set. Transition probabilities between the states are uniform.
For CRF training, observations and source labels are extracted from
the training samples of the speech mixture sets. The training is per-
formed by CRFsuite software with stochastic sub-gradient method
[9]. The same software is used for decoding. After CRF or facto-
rial HMM decoding, log power spectra of sources ŝk are recovered
by soft-mask filtering [10]. Waveforms are reconstructed with the
mixture phase spectrum by overlap-add method.

5.2. Results and discussion

The evaluation is performed with different settings of observations.
They are listed in Table 3. The recovered signals are compared with
the original signals from the corpus. Signal-to-noise ratio (SNR),
segmental SNR (SSNR), and perceptual evaluation of speech quality
(PESQ) are the performance metrics [11]. SNR and SSNR compare

1Without loss of generality, the utterance from another speaker is unde-
sired, hence it is noise.
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the quality in signal level. PESQ is an objective evaluation metric
for human perceived quality. Results of 16, 128, 512 source labels
are listed in Table 4. They are the average of two sources within the
same mixture set. Result breakdown is shown for the case of 128
source labels, which represents a medium problem size. Key results
are shown for 16 and 512 source labels, which represent a small and
a large problem size respectively. Oracle results are also included
as a reference of the performance limit, in which the source labels
are directly extracted from the original sources. A note is that the
sources recovered from oracle results are still distorted due to the
use of mixture phases. SNR and SSNR may not be always better.

Table 3. Observation setting for CRF separation framework.

Name Observation sets
1. FHMM Results by factorial HMM (baseline)
2. CRF-noGMM SPKR+F0+LS2048
3. CRF-GMM GMMOut (GMM retrained by CRF)
4. CRF-cfgA GMMOut+F0
5. CRF-cfgB GMMOut+SPKR
6. CRF-cfgC GMMOut+LS2048
7. CRF-cfgD GMMOut+SPKR+F0+LS2048
8. Oracle Labels extracted from sources

The results of CRF separation framework consistently improve
in terms of PESQ after integrating the observations with the ini-
tial separation results from factorial HMM, and usually improve in
terms of SNR and SSNR. When a new observation is integrated
into the framework, the performance tends to improve, although
the improvement may not be dramatic. The results show that log
power spectrum, fundamental frequency and speaker likelihoods of
the mixture are generally useful. Integrating all these observations
further improves the separation results. However, when the problem
size continues to grow, the advantage over factorial HMM is smaller.

The CRF separation framework is also evaluated without the
initial separation results (GMMout) as CRF-noGMM. When the
problem size is small, such as only 16 source labels, the results are
better than that of factorial HMM. When the problem size increases
to 128 source labels, the results are still better, except for Male+Male
set. This suggests that if there are more different types of observa-
tions, the CRF separation framework is competitive to other separa-
tion algorithms without integrating the initial results from them.

When the CRF separation framework is based on only a few
types of observations, over-training is observed. An example is the
Male+Male set with only GMMout as observation (CRF-GMM).
The results are significantly poorer. When more types of observa-
tions are included, the improvement trend is restored.

6. CONCLUSION

In this paper, a CRF based framework for single-microphone separa-
tion is proposed. The framework is able to integrate different types
of observations and even incorporate the results of other separation
processes. The observations are not required to be conditional inde-
pendent of each other, hence a large variety of observations can be
chosen. Experiments show that the separation results from factorial
HMM separation approach are improved by the proposed method
when log power spectrum, fundamental frequency and speaker like-
lihoods of the mixture are integrated. Without the initial separation
results, the framework can reach or over the performance level of
factorial HMM with 16 and 128 output source labels. It is believed
that the performance can be further improved if more different types
of observations are available. Currently, the framework is based on
speaker-dependent models. Our future work is to extend the frame-
work to be speaker independent.

Table 4. Results in SNR (dB), SSNR (dB) and PESQ of CRF sepa-
ration framework for G = {16, 128, 512} source labels.

Mix.
SNR SSNR PESQ SNR SSNR PESQ SNR SSNR PESQ

FHMM 3.49 1.83 1.63 4.61 3.37 1.68 3.74 3.10 1.46
CRF-noGMM 3.74 2.46 1.78 5.19 3.72 1.92 3.82 3.45 1.64
CRF-GMM 3.43 2.19 1.67 4.97 3.59 1.84 3.67 3.20 1.53
CRF-cfgD 3.79 2.49 1.81 5.21 3.77 1.94 3.86 3.51 1.66
Oracle 4.37 3.18 2.15 4.11 3.01 2.06 5.14 6.07 2.19
FHMM 4.16 2.72 1.87 6.10 4.49 2.06 5.15 4.16 1.82
CRF-noGMM 3.80 2.68 1.78 6.16 4.55 2.08 4.99 4.31 1.89
CRF-GMM 3.85 2.77 1.71 6.17 4.64 2.05 5.13 4.43 1.89
CRF-cfgA 3.85 2.78 1.71 6.27 4.68 2.10 5.23 4.51 1.93
CRF-cfgB 4.04 2.86 1.82 6.28 4.69 2.11 5.21 4.49 1.95
CRF-cfgC 4.05 2.87 1.82 6.29 4.69 2.11 5.19 4.50 1.92
CRF-cfgD 4.22 2.94 1.93 6.40 4.75 2.18 5.28 4.58 1.98
Oracle 5.21 3.86 2.51 5.22 3.91 2.39 5.90 5.18 2.35
FHMM 4.16 2.79 1.96 6.72 4.68 2.24 5.86 4.64 2.01
CRF-noGMM 3.94 2.69 1.90 6.49 4.64 2.15 5.44 4.55 1.97
CRF-GMM 4.20 2.97 1.93 6.74 4.83 2.20 5.79 4.83 2.08
CRF-cfgD 4.30 2.98 2.01 6.85 4.89 2.27 5.81 4.84 2.11
Oracle 5.55 4.13 2.66 5.75 5.62 2.89 6.73 5.60 2.58

Female + Female

128

16

512

Male + Male Male + Female
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