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ABSTRACT
In this paper, we propose a variational Bayes approach to the un-
derdetermined blind source separation and show how a variational
treatment can open up the possibility of determining the actual num-
ber of sources. The procedure is performed in a frequency bin-wise
manner. In every frequency bin, we model the time-frequency mix-
ture by a variational mixture of Gaussians with a circular-symmetric
complex-Gaussian density function. In the Bayesian inference, we
consider appropriate conjugate prior distributions for modeling the
parameters of this distribution. The learning task consists of estimat-
ing the hyper-parameters characterizing the parameter distributions
for the optimization of the variational posterior distribution. The
proposed approach requires no prior knowledge on the number of
sources in a mixture.

Index Terms— blind source separation, variational Bayesian
approach, number of sources, variational mixture of Gaussians

1. INTRODUCTION
Most blind source separation (BSS) approaches rely on the assump-
tion that the number of mixed sources in an observation mixture is
known. This assumption restricts the application of BSS in real-
world scenarios. In this paper, we propose a variational Bayes ap-
proach that requires no prior knowledge on the number of sources.
In [1], motivated by the line orientation idea [2], the observation
mixture is modeled by a mixture of circular-symmetric complex-
Gaussian distributions where expectation maximization (EM) algo-
rithm is employed to estimate parameters of the density function and
posterior probabilities. This approach needs to know the number
of components in advance. On the other hand, the EM algorithm
is shown to be sensitive to the initialization [3] because, depend-
ing on starting values, it may converge to a local maximum of the
observed-data likelihood-function and provide only a suboptimal so-
lution. [1, 4, 5] can be regarded as the pioneer work for solving the
underdetermined BSS with EM algorithm.

The model uncertainty can be taken into account in a Bayesian
framework by considering distribution of parameters instead of pa-
rameter point estimates [6, 7]. Bayesian approaches do not suffer
from overfitting which can be considered as one of the substantial
advantages of Bayesian methods over maximum-likelihood ones. In
this paper, similar to [1], we model the observation mixture by a
variational mixture of circular-symmetric complex-Gaussian distri-
butions. We define proper conjugate prior distributions for model-
ing the parameters of the mixture model and use variational Bayes
treatment [7] for estimating hyper-parameters characterizing the pa-
rameter distributions. In the experimental result, we compare the
separation performance of the proposed variational Bayes approach
with the maximum-likelihood based EM realization of that [1] which
will be called the EM-based approach, afterwards. We show that the
proposed approach has competitive separation performance while it
requires no prior knowledge on the number of sources and with little
overhead in terms of the computational complexity.
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2. PROBLEM FORMULATION
Let s1(t), . . . , sQ(t) be desired sources and y1(t), . . . , yD(t) be ob-
servation mixtures, where Q and D indicate the number of sources
and the number of observations, respectively. Assuming a convo-
lutive mixture model, the observation yd(t) is given by yd(t) =∑Q

q=1

∑
l hdq(l)sq(t − l), where hdq(l) represents the impulse re-

sponse from source q to microphone d. The convolutive mixture
model yd(t) is transformed to the time-frequency representation by
using the short time Fourier transform and can be approximated as
an instantaneous mixture model at each frequency bin as yd(n, f) =∑Q

q=1 hdq(f)sq(n, f), where sq(n, f) is the time-frequency repre-

sentation of sq(t), f indicates the frequency bin, and n indicates
the time frame. In vector notation, it can be written as y(n, f) =∑Q

q=1 hq(f)sq(n, f) which under sparsity assumption can be ex-

pressed by y(n, f) = hq′(f)sq′(n, f). Subscript q′ is the index of
the dominant source.

To remove the source amplitude effect, the observations y(n, f)
are normalized such that they have a unit norm. It can be achieved

by x(n, f) = y(n,f)
‖y(n,f)‖ . A pre-whitening, [8, 1], is performed by

multiplying x(n, f) by the whitening matrix W, as: x(n, f) ←
Wx(n, f), where W =

√
AGH . G and A are calculated from

eigenvalue decomposition of the correlation matrix E[xxH ] =
GAGH . The normalization procedure is performed one more time
after whitening. In the rest of the paper, we omit the frequency-
bin index since all procedure is performed in a frequency bin-wise
manner.

3. MODEL DESCRIPTION
In the mixture model, for each observation xn, there is a correspond-
ing latent variable (indication vector) zn which forms a 1-of-K bi-
nary vector with elements znk. Let X = {x1, . . . ,xN} denote the
observation set in a particular frequency bin, and Z = {z1, . . . , zN}
denote the latent variables, where N indicates the whole number of
time frames. The conditional distribution of Z given the mixing co-
efficients γ = {γk} can be expressed by

p(Z|γ) =
N∏

n=1

K∏
k=1

γ
znk
k . (1)

We express the conditional distribution of X given the latent vari-
ables Z and component parameters μ = {μk} and λ = {λk} by

p(X|Z,μ,λ) =
N∏

n=1

K∏
k=1

Ñc(xn|μk, λ
−1
k )znk , (2)

where, motivated by [1, 2], Ñc(xn|μk, λ
−1
k ) denotes a circular-

symmetric complex-Gaussian density function

Ñc(xn|μk, λ
−1
k ) =

1

(πλ−1
k )D−1

e−λk‖xn−(μH
k xn)μk‖2 , (3)

where μk is the centroid with unit norm, μH
k μk = 1, and λk is

the precision which is scalar and the same for all k. (μH
k xn)μk is
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the orthogonal projection of xn onto the subspace spanned by μk,
hence, the distance ‖xn−(μH

k xn)μk‖2 determines the dependency
of xn to the kth class. In the next step, we consider priors over the
parameters μ, λ, and γ. A Dirichlet prior distribution is introduced
over the mixing coefficients γ as

p(γ) = Dir(γ|α0) = C(α0)

K∏
k=1

γα0−1
k , (4)

where α0 is chosen the same for all components and C(α) =
Γ(α̂)

Γ(α1...αK)
, α̂ =

∑K
k=1 αk. For small values of α0, the posterior

distribution will be influenced mostly by the data and not by the
prior. A Gaussian-Gamma prior is introduced to govern the mean
and precision of each Gaussian component, given by

p(μ,λ) = p(μ|λ)p(λ) =
K∏

k=1

Nc

(
μk|m0, (λkβ0I)

−1)
G(λk|a0, b0), (5)

where Nc(μk|m0, (λkβ0I)
−1) is a circular-symmetric complex-

Gaussian density fuction with mean value m0 and the precision
(λkβ0I)

−1 (β0 is a scalar and I is the identity matrix) of the form

Nc

(
μk|m0, (λkβ0I)

−1) =

1(
π(λkβ0)−1

)D e−λk(μk−m0)
Hβ0I(μk−m0). (6)

It is worth noting that considering such a conjugate distribution for
modeling p(μ,λ) may not be the best possible choice since we re-
quire μH

k μk = 1 in (3). However, we show that it can be a good
approximation to be used as a conjugate prior. G(λk|a0, b0) is a
Gamma density function with the shape parameter a0 and the scale
parametr b0, given by

G(λk|a0, b0) =
1

Γ(a0)
ba0
0 λa0−1

k e−b0λk , (7)

where Γ(·) denotes the Gamma function.

4. OPTIMIZATION OF THE VARIATIONAL POSTERIOR
DISTRIBUTION

We employ the variational Bayes approach [5]. Having only the ob-
servation set X observed, the joint distribution of the observation
set, latent variables, and component parameters is given by

p(X,Z,γ,μ,λ) = p(X|Z,μ,λ)p(Z|γ)p(γ)p(μ|λ)p(λ). (8)

The variational posterior distribution which factorizes the latent vari-
ables and the component parameters can be written by

q(Z,γ,μ,λ) = q(Z)q(γ,μ,λ). (9)

The optimization of the variational posterior distribution q(Z,γ,μ,λ)
consists of optimization of the variational posterior distribution of
the latent variables q(Z) and component parameters q(γ,μ,λ).
Starting with the optimization of q(Z), the log of the optimized
factor 1 q∗(Z) is given by

ln q∗(Z) = Eγ,μ,λ[ln p(X,Z,γ,μ,λ)] + const

= Eγ [ln p(Z|γ)] + Eμ,λ[ln p(X|Z,μ,λ)] + const,

(10)

1Let p(Y,θ) denote the joint distribution of the probabilistic model of
the set of observed variables Y and the set of all latent variables and param-

eters θ where q(θ) =
∏I

i=1 qi(θ). The general expression for the optimal
solution q∗j (θj) is given by ln q∗j (θj) = Ei �=j [ln p(Y,θ)] [7].

where the superscript (∗) is used to show the optimized factor. By
substituting (1) and (2) in (10) and including terms which are inde-
pendent of Z in the constant term, we obtain

ln q∗(Z) =
N∑

n=1

K∑
k=1

znkln ρnk + const, (11)

where

ln ρnk = −(D − 1)ln π + (D − 1)Eλk [ln λk]+

Eγk
[ln γk]− Eμk,λk [λk‖xn − (μH

k xn)μk‖2]. (12)

Let us rewrite (11) as q∗(Z) ∝ ∏N
n=1

∏K
k=1 ρ

znk
nk and normalize it

so that for each value n, the quantities znk are binary and sum to one
over all values of k. Hence, we get

q∗(Z) =
N∏

n=1

K∏
k=1

ξ
znk
nk , (13)

which is a multinomial distribution with

ξnk =
ρnk∑K
k=1 ρnk

. (14)

ξnk are called responsibilities, and it is worth noting that these re-
sponsibilities are real and sum to unit, thus, for the multinomial dis-
tribution q∗(Z), we have EZ[znk] = ξnk.

Next, we consider the optimization of the variational posterior
distribution of the component parameters q(γ,μ,λ) in (9). The log
of the optimized factor q∗(γ,μ,λ) is given by

ln q∗(γ,μ,λ) = EZ[ln p(X|Z,μ,λ)
+ln p(Z|γ) + ln p(γ) + ln p(μ,λ)]. (15)

Considering (2), (1), (4), and (5) in (15), we obtain

ln q∗(γ,μ,λ) =
N∑

n=1

K∑
k=1

ξnkln Ñc(xn|μk, λ
−1
k )+

N∑
n=1

K∑
k=1

ξnkln γk + ln Dir(γ|α0) +

K∑
k=1

ln Nc

(
μk|m0, (λkβ0I)

−1)+ ln G(λk|a0, b0). (16)

The right hand side of (16) includes terms which involve either μ
and λ or γ, hence, q(γ,μ,λ) can be factorized as q(γ,μ,λ) =
q(γ)q(μ,λ). First, we start with optimization of the variational pos-
terior distribution of the mixture weights q(γ). By identifying those
terms in (16) that only involve γ, we get

ln q∗(γ) =
K∑

k=1

(
(α0 − 1) +

N∑
n=1

ξnk

)
ln γk + const. (17)

Thus, q∗(γ) is given by

q∗(γ) = Dir(γ|α), (18)

where
αk = α0 +

N∑
n=1

ξnk. (19)

Next, we consider the optimization of the second term q(μ,λ)
in the variational posterior distribution q(γ,μ,λ). q(μ,λ) can

be factorized as q(μ,λ) =
∏K

k=1 q(μk, λk). In order to derive
q∗(μk, λk), we identify the terms in (16) which depend only on μk

and λk, hence

ln q∗(μk, λk) =

N∑
n=1

ξnkln Ñc(xn|μk, λ
−1
k )+

ln Nc

(
μk|m0, (λkβ0I)

−1)+ ln G(λk|a0, b0). (20)
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The variational posterior distribution q∗(μk, λk), by using the Bayes
rule, can be factorized as

q∗(μk, λk) = q∗(μk|λk)q
∗(λk). (21)

Considering the terms which only depend on μk in (20), ln q∗(μk|λk)
is given by

ln q∗(μk|λk) = −λkμ
H
k (

N∑
n=1

−ξnkxnx
H
n + β0I)μk+

λkμ
H
k β0Im0 + λkm0

Hβ0Iμk + const, (22)

where we have made use of μH
k μk = 1. Therefore, as a conse-

quence of choosing a proper conjugate distribution, q∗(μk|λk) is
again a circular-symmetric complex-Gaussian distribution as

q∗(μk|λk) = Nc

(
μk|mk, (λkβk)

−1), (23)

where

βk =

N∑
n=1

−ξnkxnxn
H + β0I (24)

mk = β−1
k β0Im0. (25)

From (21), we can determine q∗(λk) simply as

ln q∗(λk) = ln q∗(μk, λk)− ln q∗(μk|λk). (26)

On the right hand side of (26), we substitute for ln q∗(μk|λk) using
(22) and for ln q∗(μk, λk) using (20). Keeping those terms that only
depend on λk, we obtain

ln q∗(λk) =
(
(D − 1)

N∑
n=1

ξnk + (a0 − 1)
)
ln λk−

λk

( N∑
n=1

ξnkx
H
n xn +mH

0 β0Im0 + b0 −mH
k βkmk

)
.(27)

Note that the terms involving μk have been canceled out in (27)
since q∗(λk) is independent of μk. Hence, q∗(λk) is a Gamma dis-
tribution as

q∗(λk) = G(λk|ak, bk), (28)

where shape parameter ak and scale parameter bk are given by

ak = (D − 1)

N∑
n=1

ξnk + a0 (29)

bk =

N∑
n=1

ξnkx
H
n xn +mH

0 β0Im0 + b0 −mH
k βkmk.

1 (30)

Finally, we showed that the posterior distribution q∗(μk, λk),
as expected, is a Gaussian-Gamma distribution, q∗(μk, λk) =
Nc(μk|mk, (βkλk)

−1)G(λk|ak, bk), which is a consequence of
using conjugate distributions.

In order to calculate the responsibilities ξnk (14), we need to cal-
culate Eγk [ln γk], Eλk [ln λk], and Eμk,λk [λk‖xn − (μH

k xn)μk‖2]
which are involved in the calculation of (12). Eγk [ln γk] and
Eλk [ln λk] are calculated by

Eγk [ln γk] = �(αk)−�(α̂), (31)

Eλk [ln λk] = �(ak)− ln bk, (32)

where �(·) is the digamma function. For the calculation of
Eμk,λk [λk‖xn − (μH

k xn)μk‖2], first we calculate the required

1mH
0 β0Im0 and mH

k βkmk are real-valued scalars since β0I and βk
are hermitan matrices.

expectation with respect to μk, and then we take the expectation
with respect to λk, which gives

Eμk,λk [λk‖xn − (μH
k xn)μk‖2] =

xH
n

(
(I −mkm

H
k )

ak

bk
+Dβ−1

k

)
xn. (33)

where we have made use of E[μk] = mk, E[μkμ
H
k ] = mkm

H
k +

(λkβk)
−1, and (21).

We can evaluate lower bound [7] for this model to monitor the
bound during re-estimation and to examine the convergence. In ev-
ery re-estimation, the value of the bound must increase. From [7],
the lower bound can be calculated by

Lbound = E[ln p(X|Z,μ,λ)] + E[ln p(Z|γ)] + E[ln p(γ)]+

E[ln p(μ,λ)]− E[ln q(Z)]− E[ln q(γ)]− E[ln q(μ,λ)],

(34)

where the expectation is taken with respect to the component pa-
rameters and latent variables, appropriately. Regarding to the model
description and the derived update equations, we obtain

Lbound =

N∑
n=1

K∑
k=1

ξnk

(− (D − 1)ln π + (D − 1)ln E[λk]−

xH
n ((I −mkm

H
k )

ak

bk
+Dβ−1

k )xn

)
+

N∑
n=1

K∑
k=1

ξnkE[ln γk]

+ln C(α0) + (α0 − 1)

K∑
k=1

E[ln γk] +Dln
|β0I|
π

+Dln λk −

Dβ0Iβ
−1
k −

ak

bk
(mk −m0)

H(mk −m0) +

ln
ba0
0

Γ(a0)
+ (a0 − 1)E[ln λk]− b0

ak

bk
+

N∑
n=1

K∑
k=1

ξnkln ξnk

+ln C(α0) +

K∑
k=1

(αk − 1)E[ln γk] +Dln E[λk]

+D(ln βk − ln π − 1)−H[q(λk)], (35)

where H[q(λk)] is the entropy of the Gamma distribution which is
given by H[q(λk)] = ln Γ(λk)− (a− 1)�(λk)− ln bk + ak.

Fig. 1 shows the lower bound at a particular frequency bin, af-
ter applying the approach to a two-channel live-recording mixture
of 3 speech signals in a room with 130 ms reverberation time and
1 m microphone spacing. The initial number of components K is
set to 7. It is noticeable that there are four jumps in iterations 12,
53, 70, and 75. It implies that in those iterations, one of the compo-
nents has been disregarded during the optimization procedure. More
specifically, we demonstrate the classification result in Fig. 2 by two-
dimensional plots of the real part of the projected posterior mean and
the covariance in the mentioned iterations. By comparing Fig. 1 and
Fig. 2, the jumps in Fig. 1 can be explained.

In summary, the algorithm starts with the initialization of the
hyper-parameters characterizing the parameter distributions. In the
next step, we use the current distribution over the model parame-
ters to evaluate the responsibilities (14) by computing moments (31),
(32), and (33) involved in the calculation of (12). Later, these respon-
sibilities are used for the optimization of the variational posterior dis-
tribution over parameters using re-computing (18), (23), and (28). In
every iteration, we monitor the variational lower bound (34), and the
procedure will be continued until convergence. In other words, the
optimization of the variational posterior distribution is analogous to
the E and M step of the maximum likelihood EM algorithm.
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Fig. 1. Monitoring the lower bound (35). The initial number of components
K is set to 7.
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Fig. 2. Two-dimensional plots of the real part of the projected posterior
mean and the covariance in iterations 12, 53, 70, 75, and 200.

5. SOURCE SEPARATION
There is a disorder along frequency bins, known as permutation am-
biguity, so that the class order may differ from one frequency to
another. Let ξf

j = [ξf1j , . . . , ξ
f
Nj ] denote a sequence of responsibil-

ities in a frequency bin f , where j ∈ Kf
opt, and Kf

opt = {k}αk>ε.

ξfnk and αk are given by (14) and (19), respectively. The idea is that
sequences belonging to the same source generally have similar pat-
terns among different frequency bins. Therefore, the correlation co-
efficient of these sequences can be used to measure similarity among
patterns and, hence, measure the interfrequency dependence. Here,
we employ the permutation alignment procedure proposed in [1] for
this purpose. There is an implementation issue which needs to be
considered in the permutation alignment procedure. Let #Kf

opt de-
note the number of optimal components at frequency f . In the major-
ity of frequencies, #Kf

opt is equal to the number of original sources

Q, however, at some frequencies, #Kf
opt might be greater than or

less than Q, which can be explained by the presence of noise in the
environment or reverberation. Thus, we have three possible cases:
#Kf

opt = Q, #Kf
opt < Q, and #Kf

opt > Q. The second case is
special case of the first case in the sense that one of the components
is considered as zero. In the third case where #Kf

opt > Q, we need
to keep only Q of the components and disregard the other compo-
nents. This is valid since αk in those components are significantly
less than the other components and most likely those components
are related to the noise or reverberation.In this work, we use binary
masking for constructing separated signals in the frequency domain.
Binary masking relies on the sparseness property of the speech sig-
nal. Based on the sparsity property, at most one source has a large
contribution to each TF point. The separated signals in the TF do-
main are constructed by ŷqd(τ, f) =Mk(τ, f)yd(τ, f), where we
have definedMk(τ, f) such thatMk(τ, f) = 1 if ξnk ≥ ξnk′ and
Mk(τ, f) = 0 if ξnk < ξnk′ , ∀k′ 	= k. Finally, separated signals
ŷqd(τ, f) are transformed to the time domain by the inverse short-
time Fourier transform.

6. EXPERIMENTAL RESULTS
The algorithm is evaluated on the development data (dev1.zip) used
in the audio source separation campaign (SiSEC08) [9]. We consider
live recording mixtures of three female speech signals (female3) and
3 male speech signals (male3) sampled at 16 kHz and with 9 seconds
duration. In order to evaluate the robustness of the proposed algo-

Table 1. Separation results on SiSEC 2008 database in terms of the aver-
age output SDR of all sources in dB. VB refers to the proposed variational
Bayes approach and EM refers to the EM-based approach. SDR∗ and SDR
show, respectively, the best and the average results in 20 times running both
algorithms with random initializations

.
RT60 130ms 250ms 130ms 250ms

mixture female3 female3 male3 male3
mic. spacing 1m 5cm 1m 5cm 1m 5cm 1m 5cm

VB
SDR∗ 7.7 5.8 6.7 5.5 6.4 5.3 6.0 4.6

SDR 6.2 5.0 5.7 4.5 5.2 4.2 5.6 3.0

EM
SDR∗ 8.6 6.4 7.3 5.8 6.7 5.8 6.1 4.3

SDR 6.8 5.5 6.4 5.0 5.7 4.6 5.8 3.6

rithm, two microphone spacings, 5 cm and 1 m, are considered under
130 ms and 250 ms reverberation times. The algorithm uses a 2048
sample length Hann window with a 75% overlap. Table 1 shows
the separation results in terms of the output signal-to-distortion ratio
(SDR) [10] for the proposed variational Bayes approach and EM-
based approach [1]. This table shows the best and average results
of 20 times running the algorithms. The EM based algorithm ben-
efits from the prior knowledge on the exact number of sources (the
number of components K is set to the number of sources), however,
the variational Bayes approach assumes no prior information on the
number of sources (K is set to an arbitrary large value, i.e., K = 7 in
our experiments). Although EM-based approach has slightly better
performance, it requires a prior knowledge on the number of sources
while the proposed variational Bayes approach does not. The audio
files of the experiments can be downloaded from [11]. We also ex-
amined the algorithm for scenarios where more than three sources
are mixed. However, we run into some instability, that we think
could possibly be related either to the permutation alignment proce-
dure or the classification part. This needs to be examined in details
in the future work.

7. CONCLUSION
We proposed a variational Bayes approach to the underdetermined
blind source separation in the time-frequency domain. We showed
that the proposed approach has a competitive separation perfor-
mance compared to the EM-based approach [1] while it requires no
prior knowledge on the number of sources and with little overhead
in terms of the computational complexity.
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