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ABSTRACT

For model-based single channel source separation, one typically as-
sumes a linear interaction model, i.e. that the mixture magnitude
spectrogram is the sum of the individual source magnitude spec-
trograms. In the log-domain, the MIXMAX interaction model is
the corresponding approximation for the linear model. Hence, one
would expect similar performance for both approaches. However, in
this paper we empirically show that this is not the case for vector-
quantizer-based (VQ) single channel source separation. We propose
factorial linear-VQ, the linear counterpart to factorial max-VQ, and
compare the two methods in systematic source separation experi-
ments. Linear-VQ performs significantly better than max-VQ for
comparable code-book sizes and behaves more robustly in the pres-
ence of additive white noise. Furthermore, we compare resynthesis
properties of binary and continuous time-frequency masks. While
binary masks achieve a higher interference suppression, the use of
continuous masks results in a consistently better signal quality.
Index Terms: source separation, single channel, VQ, time-
frequency masking

1. INTRODUCTION

Audio source separation is an important problem in speech and au-
dio processing, with a large number of potential applications, such
as preprocessing for automatic speech recognizers in noisy environ-
ments, audio post-processing, intelligent hearing-aids, word spotting
and audio information retrieval, to name but a few. When sources
shall be extracted from a monophonic mixture, we have an instance
of the generally ill-posed single channel source separation problem
(SCSS). Besides computational auditory scene analysis (CASA) [1],
which aims to mimic low-level separation and grouping mechanisms
of the biological auditory system, there exists a statistical, model-
based approach for SCSS. Generally, in model-based approaches,
source specific models are used to infer source signal estimates from
the mixture recording. Typically, these models are trained a priori
on a time-frequency representation of clean source specific signals.
An estimation of the source spectra can then be used to calculate
a binary or continuous time-frequency mask for resynthesis. For
model-based approaches, the factorial HMM model and the facto-
rial max-VQ model proposed by Roweis [2, 3] can be considered as
key-work. Further related models can be found in [4, 5, 6], and in
references therein.

Usually, phase information is discarded beforehand, since it is
more difficult to handle and considered less important than the mag-
nitude of the time-frequency bins. Some authors prefer to use magni-
tude spectra, while others work in the log-spectral domain. However,

Acknowledgement: This work was supported by the Austrian Science
Fund (project number P22488-N23).

it is not clear whether one of these two approaches is more beneficial
than the other. As far as we know, there is no theoretical justifica-
tion for the use of log-spectra for SCSS, except possibly a biological
one, since human beings perceive dynamics on a logarithmic scale.
For magnitude spectra, one typically assumes that the mixture spec-
trum can be approximated by the sum of the source spectra, which
is exactly true only for complex-valued spectra. The equivalent ap-
proximation for log-magnitude spectra is the log sum exp (softmax)
function. Further approximating the softmax with the max func-
tion, leads to the well-known MIXMAX approximation, first used by
Nadas et al. [7]. In [8], it was shown that the MIXMAX approxima-
tion is a nonlinear MMSE estimator for the case of two interfering
sources, under the rather mild assumption of uniformly distributed
phase differences in each time-frequency bin.

In this paper, we compare the linear and the MIXMAX interac-
tion model by means of the factorial vector quantizer (VQ) model,
which was introduced by Roweis for the MIXMAX approach [3].
We propose a correspondent model for (linear) magnitude spec-
tra, and compare the two systems on mixture utterances from the
database of Cooke et al. [9]. As a second contribution, we empiri-
cally study the advantages and disadvantages of binary and continu-
ous masks, when used for resynthesis. We consider a time-frequency
representation of the source signals and the mixture, by transform-
ing the time signals via the short-time Fourier transform (STFT).
With s

m, we denote the short-time spectrum of the mth source, and
x denotes the short-time spectrum of the mixture, each containing
D frequency bins. The frame index is omitted, since the presented
VQ-based methods operate in a frame-wise manner.

The paper is organized as follows. In section 2, we review the
factorial max-VQ system [3]. In section 3, we propose its linear
counterpart, factorial linear-VQ. In section 4, we describe the resyn-
thesis method using binary or continuous masks. In section 5, we
present our experiments and section 6 concludes the paper.

2. FACTORIAL MAX-VQ

In the factorial max-VQ model [3], the spectrum of the mth source
is modeled by a VQ with codebook W

m = [wm
1 , . . . , wm

Km ],
containing Km code-vectors. Each VQ selects its code-
vector independently of the others. For the mth source,
the kth code-vector is picked with prior probability
πm

k = p(zm = k), k, zm ∈ {1, . . . , Km}, where zm denotes
the index of the selected codebook entry. The codebooks W

m

are obtained by k-means training, applied to log-magnitude
spectrograms of clean, source specific training data. The
priors π

m = (πm
1 , . . . , πm

Km ) are estimated by the relative
selection-frequencies of the code-vectors in the training stage.
Additionally, for each frequency bin, source specific noise variances
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v
m = (vm

1 , . . . , vm
D )T are obtained by variance estimates of

k-means’ residual error. The dth frequency bin of the mixture
spectrum xd is assumed to be distributed according to a Gaussian:

p(xd|z) = N
“
xd|w

ad

za
d ,d

, v
ad

d

”
, (1)

where z = (z1, . . . , zM )T is the vector of all codebook indices and
ad = arg maxm (wm

zm,d). Assuming independence among the fre-
quency bins, the likelihood of the mixture spectrum x is given as

p(x|z) =
DY

d=1

p(xd|z). (2)

Hence, (2) defines a multi-variate Gaussian distribution, with mean
vector μ = maxm (wm

zm), where the maximum is taken element-
wise, and a diagonal covariance matrix Σ = diag (v), with v =
(va1

1 , . . . , v
aD

D ). The assumption that μ is the element-wise maxi-
mum of the sources’ code-vectors, follows the MIXMAX approxi-
mation [7]. For SCSS, we are interested in the maximum posterior
(MAP) solution z

∗ of codebook indices:

z
∗ = arg max

z

"
p(x|z)

MY
m=1

p(zm)

#
. (3)

The MAP solution can be found by exhaustive search, whose com-
putational effort grows exponentially in the number of sources. Al-
ternatively, search heuristics can be applied in order to find a solution
with large, but possibly sub-optimal posterior probability [10].

3. FACTORIAL LINEAR-VQ

When we operate in the magnitude spectral domain (i.e. without
log), we can approximate the mixture spectrum as the sum over the
source spectra: x ≈

PM

m=1
s

m. As in max-VQ, we assume that the
dth frequency bin of the mixture is distributed according to a Gaus-
sian, as in (1) and (2). However, applying the sum-approximation,
we obtain different mean and variance vectors, namely

μ =

MX
m=1

w
m
zm , v =

MX
m=1

v
m

, (4)

where we used the fact that the sum of Gaussian random variables is
again Gaussian. The posterior of this model is given as in (3). The
codebooks W

m, the priors π
m, and the variances v

m are obtained
as in section 2, with the only difference, that magnitude spectro-
grams instead of log-magnitude spectrograms are used for k-means
training.

4. TIME-FREQUENCY MASKS

Once we have found the MAP indices z
∗, we can interpret the cor-

responding code-vectors as approximations ŝ
m of the sources’ mag-

nitude spectra: ŝ
m = exp(wm

zm), for max-VQ, and ŝ
m = w

m
zm , for

linear-VQ. The binary mask (BM) for the mth source is then given
as

BMm
d =

j
1, if ŝm

d > ŝl
d, l �= m,

0, otherwise.

Hence, the BM represents a hard assignment of time-frequency bins
to specific sources. To resynthesize time signals, one multiplies the
BM with the original complex spectrogram and performs the inverse
short-time Fourier transform, i.e. the inverse Fourier transform for

each short-time spectrum, followed by an overlap-and-add proce-
dure. Alternatively, we can define a continuous mask (CM), accord-
ing to a Wiener filter:

CMm
d =

(ŝm
d )2PM

l=1
(ŝl

d)
2
.

The CM can take any value between 0 and 1 and represents a soft
assignment of frequency bins to sources. Hence, when the goal is to
resynthesize the separated signals, we expect a better signal quality
using a CM. On the other hand, when the goal is signal analysis
or high interference suppression, a BM is preferred. In [11], the
estimation of the ideal BM is depicted as the ultimate goal of CASA.

5. EXPERIMENTS

In our experiments we used data from the GRID corpus [9], where
we selected speakers 18 and 20 (female), and speakers 1 and 2
(male). For each speaker, we selected 10 random test utterances,
while the remaining 490 utterances were used as training data. All
speech signals were sampled at 16 kHz, normalized to zero-mean
and to unit standard deviation. For the spectrograms, we took
frames of 1024 samples with 50% overlap and applied a ham-
ming window. We trained several codebooks with K codewords,
K ∈ {50, 100, 200, 300, 400, 500}. We considered all 6 speaker
pairs, and for each speaker pair we mixed all 100 possible combi-
nations of test utterances, where we used anechoic, instantaneous
mixtures at a mixing level of 0 dB.

5.1. Performance Measures

Vincent et al. [12] proposed four measures in order to evaluate
the performance of audio source separation algorithms. These
are the signal-to-distortion ratio (SDR), signal-to-interference ra-
tio (SIR), signal-to-noise ratio (SNR), and signal-to-artifact ratio
(SAR). Let ŝ be an estimation of a certain target source starget

in time domain, extracted by an algorithm under test. They as-
sumed the following decomposition: ŝ = ŝtarget + einterf +
enoise + eartif , where ŝtarget is the desired target signal starget

(up to some scale), einterf is the sum of interfering signals (each
up to scale), enoise is the known noise signal (up to scale), and
eartif = ŝ− ŝtarget−einterf−enoise. In order to estimate these com-
ponents, we define the matrix B = (starget, sint1 , . . . , sintM−1

, sn),
whose columns contain the target signal, the M − 1 interfering
signals, and the noise signal. Shorter signals are zero-padded in
order to have the same length as the longest signal. We cal-
culate the coefficients (ctarget, cint1 , . . . , cintM−1

, cn)T = B
† ŝ,

where † denotes the pseudo-inverse. The assumed signal com-
ponents are then given as ŝtarget = starget ctarget, einterf =
(sint1 , . . . , sintM−1

)(cint1 , . . . , cintM−1
)T , enoise = sn cn, and

eartif = ŝ − ŝtarget − einterf − enoise. With these signal compo-
nents at hand, the performance measures are defined as:

SDR :=
‖ŝtarget‖

2

‖einterf + enoise + eartif‖2
, (5)

SIR :=
‖ŝtarget‖

2

‖einterf‖2
, (6)

SNR :=
‖ŝtarget + einterf‖

2

‖enoise‖2
, (7)

SAR :=
‖ŝtarget + einterf + enoise‖

2

‖eartif‖2
. (8)
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Fig. 1. Relative performance comparison between continuous mask
and binary mask as a function of codebook size K. Horizontal red
lines correspond to the median, the boxes corresponds to the 25 %
and 75 % quantiles, and the whiskers represent the total range.

The SDR corresponds to overall signal quality, since it compares the
target signal energy to the energy of all unwanted components. The
SIR reflects how well the interfering sources are suppressed in com-
parison to the target signal. The SNR follows the usual definition,
i.e. it compares “useful” signal energy against noise. The SAR mea-
sures the amount of artifacts introduced by the separation algorithm.

5.2. Binary versus Continuous Mask

In this section, we study the performance difference between binary
and continuous masks. We applied max-VQ and linear-VQ to all
our test mixtures, where no noise was added. We summarize our re-
sults using relative performance between the CM and the BM. The
relative SDR is calculated as SDRrel = SDRCM

SDRBM
, where SDRCM

and SDRBM is the SDR obtained for a CM or a BM, respectively.
For the SIR and the SAR, we proceed likewise. We do not consider
the SNR here, since no noise was added and the SNR is infinite by
definition. We calculated relative performance measures for all mix-
tures, combining results from max-VQ and linear-VQ, which results
in 2400 values for each value of K. Figure 1 shows a box plot of
the relative performance. We see that the CM consistently achieves a
significantly higher SDR, which corresponds to overall signal qual-
ity. The results for the SAR suggest that the higher SDR for the CM
stems from a smaller amount of artifacts introduced during resyn-
thesis. On the other hand, the BM suppresses the interfering speaker
significantly better than the CM, resulting in a higher SIR. Since
a BM represents a more radical decision and a hard assignment of
time-frequency bins to sources, it is clear that a BM introduces more
artifacts than a smooth CM, while better suppressing the interfering
speaker. We note that these results are not very surprising and as-
sume them to be widely known. However, we are not aware of an
empirical study explicitly confirming these results.

5.3. Max-VQ versus Linear-VQ

In this section, we compare factorial max-VQ with factorial linear-
VQ. For this purpose, we distinguish 4 categories of separated sig-

nals: female - female, male - female, female - male, male - male,
where the former is the gender of the target speaker, while the lat-
ter is the gender of the interfering speaker. Figure 2 compares the
median performance of max-VQ and linear-VQ in terms of SDR,
SIR and SAR, again for the noise free case. Due to lack of space,
we only show the results when a CM is used for resynthesis. The
results for the BM are likewise. We see that linear-VQ significantly
outperforms max-VQ, especially for small codebooks. For larger
codebooks, the performance difference becomes smaller, and in the
female-female case for K = 500, max-VQ performs slightly better
than linear-VQ. Subjective perceptual evaluation by the authors con-
firmed these results. One reason for the worse performance of max-
VQ might be, that logarithmic spectra are spread over R

D , while
magnitude spectra fill only the positive orthant. Since k-means aims
to minimize the sum of the Euclidean distance errors, the approxima-
tion of the log-magnitude spectra is less accurate than when modeled
in the linear domain with the same number of cluster-vectors.

Furthermore, we compare max-VQ and linear-VQ in terms of
noise-robustness. For this purpose, we contaminated the mixture ut-
terances with additive white Gaussian noise, resulting in SNRs of
20 dB, 10 dB and 5 dB. We used a codebook size of K = 500 and a
CM for resynthesis. Figure 3 compares the performance of the two
systems, dependent on the input noise level. Although the perfor-
mance of both methods drops significantly with larger noise levels,
and both systems fail for SNR = 5 dB, we can state that max-VQ is
significantly less robust against noise, especially in terms of SDR.

6. CONCLUSION

We compared the sum approximation for magnitude spectra and the
MIXMAX approximation for log-magnitude spectra for VQ-based
SCSS. As a technical contribution, we proposed factorial linear-VQ,
the linear counterpart of the factorial max-VQ system. The main
result of our work is that a seemingly irrelevant choice of features
(whether to apply the log or not) has a significant impact on the per-
formance of VQ-based source separation. As a second contribution,
we systematically compare the performance of source separation
systems using a binary or a continuous time-frequency mask. We can
conclude that a binary mask suppresses the interfering sources better
than a continuous mask, while the continuous mask introduces less
artifacts and achieves a better signal quality. Hence, a binary mask
can be advantageous for applications which require an isolated rep-
resentation of the sources, e.g. automatic speech recognition. How-
ever, when sources have to be resynthesized, and high signal quality
is required, a continuous mask should be preferred.
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