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ABSTRACT
It has recently been shown that a multi-channel linear prediction
can effectively achieve blind speech dereverberation based on
maximum-likelihood (ML) estimation. This approach can esti-
mate and cancel unknown reverberation processes from only a few
seconds of observation. However, one problem with this approach is
that speech distortion may increase if we iterate the dereverberation
more than once based on Itakura-Saito (IS) distance minimization
to further reduce the reverberation. To overcome this problem, we
introduce speech log-spectral priors into this approach, and refor-
mulate it based on maximum a posteriori (MAP) estimation. Two
types of priors are introduced, a Gaussian mixture model (GMM) of
speech log spectra, and a GMM of speech mel-frequency cepstral
coefficients. In the formulation, we also propose a new versatile
technique to integrate such log-spectral priors with the IS distance
minimization in a computationally efficient manner. Preliminary
experiments show the effectiveness of the proposed approach.

Index Terms— Dereverberation, probabilistic speech model,
Itakura-Saito distance, Maximum a posteriori estimation, Gaussian
mixture model

1. INTRODUCTION

Speech signals captured in an enclosed space such as a conference
room will inevitably contain reverberant components because of re-
flections from the walls, the floor or the ceiling. As a result, the
captured signals become less intelligible and often seriously degrade
many speech applications, including automatic speech recognition.

To cope with this problem, dereverberation techniques have been
studied that cancel out the reverberant components of the observed
signals and recover the quality of the original speech signals [1, 2, 3].
Dereverberation based on multi-channel linear prediction (MCLP)
in the frequency domain is one such technique [3]. This method
performs dereverberation based on maximum likelihood (ML) esti-
mation, where a time-varying Gaussian model (TVGM) estimated
directly from the reverberant observation is used as an approximated
speech probabilistic model. It has been shown that this method effec-
tively achieves dereverberation based only on a relatively short ob-
servation with no prior knowledge of the reverberation process. An
iterative estimation scheme was also proposed with this approach to
further reduce the reverberation. In the scheme, not only the speech
estimates but also the TVGM are updated alternately in each itera-
tion, where the TVGM is updated so that the Itakura-Saito (IS) dis-
tance between the speech estimates and the TVGM is minimized.

However, there is a problem in the iterative estimation scheme.
It may also increase distortion of speech particularly when the obser-
vation is short. As a result, we need to limit the number of iterations,
which also limits the dereverberation performance. One cause of this

problem is that the TVGM is updated based not on any prior knowl-
edge of the source, and thus the power spectra represented by the
TVGM may be updated to values that speech spectra never take. A
method for modeling the speech power spectra using an autoregres-
sive model has also been proposed [4], but the same problem occurs
even with this method.

To overcome this problem, this paper proposes a way of in-
troducing speech log-spectral priors trained in advance into MCLP
based speech dereverberation. Based on the log-spectral priors,
the TVGM can be updated to more appropriate one, therefore, the
speech signals are less likely to be distorted by iterative estimation.
In particular, we propose using a log-spectral priors represented
by a GMM of speech log spectra (LS-based prior) and by a GMM
of speech mel-frequency cepstral coefficients (MFCC-based prior).
Here, one important issue is to find a way of efficiently solving the
non-linear optimization problem that results from the introduction
of the priors. This paper therefore proposes a method for combin-
ing the expectation-maximization (EM) algorithm and Newton’s
method to realize this optimization. Note that GMMs of speech
log-spectra/MFCCs are widely used for automatic speech recogni-
tion as probabilistic models of speech features, however they have
hardly been used for speech enhancement based on the IS distance
minimization [5]. The proposed method, thus, can be viewed as
a versatile technique that can be applied to the many other speech
enhancement methods based on the IS distance minimization.

In the rest of this paper, Section 2 overviews the dereverbera-
tion method based on MCLP in the frequency domain. Section 3
describes the two proposed methods. Sections 4 and 5, respectively,
provide experimental results and concluding remarks.

2. DEREVERBERATION BASED ON
ITAKURA-SAITO DISTANCE MINIMIZATION

Suppose that a single speech source is captured by Lm microphones.
Let st,f and x

(m)
t,f be the time-frequency (TF) domain representa-

tions of the source signal and the observed signal, respectively,
where t and m are time frame and microphone indices, respectively.
The observed signal can be represented as follows [3]:

x
(m)
t,f =

Lh−1X
k=0

“
h

(m)
k,f

”∗
st−k,f + e

(m)
t,f + b

(m)
t,f , (1)

where h
(m)
t,f , e

(m)
t,f , and b

(m)
t,f are the room impulse response (RIR) of

length Lh from the source to the mth microphone in the TF domain,
the modeling errors of the RIR convolution in the TF domain, and
the noise signal. “ (·)∗ ” denotes a complex conjugate operation.
Then, assuming e

(m)
t,f = b

(m)
t,f = 0 for simplicity’s sake, the observed
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signal at m = 1 can be represented in the MCLP form as

x
(1)
t,f = c̄∗T

f x̄t−D,f + d
(1)
t,f , (2)

d
(1)
t,f =

D−1X
k=0

“
h

(1)
k,f

”∗T

st−k,f , (3)

where c̄f is a regression coefficient vector of the order of Lc, D is a
time duration corresponding to the early reflections of the reverber-
ation, “ ·̄ ” denotes a vector symbol, “(·)T ” denotes a vector/matrix
non-conjugate transposition operation, and
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.

The goal of the dereverberation method proposed in [3] is to es-
timate the regression coefficient vector c̄f and then recover, based
on (2), the desired signal d

(1)
t,f , which only contains the direct sig-

nal and the early reflections. To estimate c̄f , a likelihood function
based on a probabilistic speech model is used as an optimization cri-
terion. With the probabilistic model, the desired signal is assumed
to follow a time-varying Gaussian distribution, and the probability
density function (pdf) is defined as

p
“
d
(1)
t,f

”
= Nc

“
d
(1)
t,f ; 0, σ2

t,f

”
, (4)

where Nc(·) is a pdf of a complex Gaussian distribution, and
σ2

t,f = E{d(1)
t,fd

(1)∗
t,f } corresponds to the variance of the process,

or the power spectrum of d
(1)
t,f . This model is capable of precisely

representing the characteristics of any time-varying power spectra
because σ2

t,f can take any value in each short-time frame. Because
σ2

t,f is not given in advance, it is considered a parameter to be
estimated.

Let σ2
f = {σ2

1,f , σ2
2,f , . . . } be a time series of σ2

t,f for all frames
t at a frequency bin f , and θf = {c̄f , σ2

f} be the parameter set to be
estimated. Then, the log likelihood function can be derived as

L(θ) =
X

t

log p
“
d
(1)
t,f = x

(1)
t,f − c̄∗T

f x̄t−D,f ; θf

”
, (5)

= −
X

t

0
B@
˛̨̨
x

(1)
t,f − c̄∗T

f x̄t−D,f

˛̨̨2
σ2

t,f

+ log σ2
t,f

1
CA+ const. (6)

Here, (·) in (6) is equivalent to the IS distance between |d(1)
t,f |2 and

σ2
t,f for the estimation of σ2

t,f given |d(1)
t,f |2, and the minimization of

this term corresponds to the maximization of the likelihood.
To estimate c̄f and σ2

t,f , the likelihood function can be maxi-
mized by iterating the following:

1. Initialize σ̂2
t,f as σ̂2

t,f = |xt,f |2.
2. Repeat the following until convergence.

(a) Update ˆ̄cf as ˆ̄cf = Φ̂+ ˆ̄φ.
(b) Update d̂t,f as d̂t,f = x

(1)
t,f − ˆ̄c∗T

f x̄t−D,f .

(c) Update σ̂2
t,f as σ̂2

t,f = max{|d̂t,f |2, εf}.

where “ ·̂ ” denotes an estimated value, εf is a small positive constant
used to avoid zero division, “(·)+” is the Moore-Penrose pseudo-
inverse, and

Φ̂ =
X

t

x̄t−D,f x̄∗T
t−D,f

σ̂2
t,f

, ˆ̄φ =
X

t

x̄t−D,fx
(1)∗
t,f

σ̂2
t,f

. (7)

It is important to note that the first iteration in the above proce-
dure surely improves the quality of the speech, but the following it-
erations do not necessarily do so. Indeed, the quality often degrades,
particularly when the observation is very short. This is because in
the above 2(c), σ2

t,f is updated to a power spectrum of |d̂t,f |2 based
on the IS distance minimization with no spectral priors. Through
this update, σ2

t,f may take a value that a speech power spectrum can
never take. This is the problem with the conventional method.

3. DEREVERBERATIONWITH LOG-SPECTRAL PRIORS

In this section, we describe our two proposed methods. To overcome
the above problem, we introduce two speech log-spectral priors, the
LS-based prior and the MFCC-based prior, into the proposed meth-
ods.

3.1. Dereverberation with LS-based prior

The first proposed method performs a dereverberation based on the
maximum a posteriori (MAP) estimation with an LS-based prior.
Let a time series of the speech log spectra be ρf = {ρ1,f , ρ2,f , . . . }
where ρt,f = log σt,f , and a conditional pdf of the param-
eters c̄f and ρf given the time series of the observed signals
xf = {x1,f , x2,f , . . . } be represented as

p(c̄f , ρf |xf ) ∝ p(xf |c̄f , ρf )p(ρf ), (8)

where we disregarded the prior term p(c̄f ), assuming it to be uni-
form. We also disregarded the prior term p(xf ) as a constant term.
On the right side of (8), p(xf |c̄f , ρf ) is equivalent to (6), and p(ρf )
is the prior of the speech log spectra.

Then, a speech log spectrum ρ̄t = [ρt,1, ρt,2, . . . ]
T in each time

frame is modeled by a multivariate GMM (log-spectral GMM) as

p(ρ̄t) =
MX
i

p(i)N (ρ̄t; μ̄i, Ωi), (9)

where M is the number of mixture components, and p(i) is a mix-
ture weight for i = 1, . . . , M that satisfies

PM
i=1 p(i) = 1 and

p(i) ≥ 0. N (·) is a multivariate Gaussian pdf, where μ̄i and Ωi are
the mean vector and the covariance matrix of ρ̄t for each i, respec-
tively. We assume that Ωi is diagonal with its diagonal components,
{ω2

i,1, ω
2
i,2, . . . }. This allows us to perform the MAP estimation

separately in individual frequency bins by using (8).
Let θf = {c̄f , ρf} and θ = {θ1, θ2, . . . } be the parameter set

to be estimated. Then, we adopt the EM algorithm to estimate the
parameter set θf that maximizes (8), letting i be a hidden variable.
Accordingly, θf is estimated based on the following procedure:

1. Initialize θ.
2. Repeat the following until convergence.

(a) E-step: Compute Q(θf |θ̂).
(b) M-step: Set θ̂f = arg max

θf

Q(θf |θ̂).
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where Q(θf |θ̂) is the auxiliary function defined as

Q(θf |θ̂) = −
X

t

0
B@
˛̨̨
x

(1)
t,f − c̄∗T

f x̄t−D,f

˛̨̨2
exp(2ρt,f )

+ 2ρt,f

+
MX
i

zi,t
(ρt,f − μi,f )2

2ω2
i,f

!
, (10)

zi,t =
p(i)N (ˆ̄ρt; μ̄i, Ωi)PM
i p(i)N (ˆ̄ρt; μ̄i, Ωi)

. (11)

Specifically, we perform the optimization as follows:
1. Initialize ρ̂t,f as ρ̂t,f = log |xt,f |.
2. Repeat the following until convergence.

(a) Update ˆ̄cf as ˆ̄cf = Φ̂+ ˆ̄φ.
(b) Update d̂t,f as d̂t,f = x

(1)
t,f − ˆ̄c∗T

f x̄t−D,f .
(c) Update ρ̂t,f so that it satisfies ∂Q/∂ρt,f = 0.

In the above procedure, ρ̂t,f is updated using the prior of ρt,f in
2(c), and only the way of updating this parameter is different from
that of the conventional dereverberation method. For the update of
ρ̂t,f , we adopt Newton’s method, which can be accomplished in a
computationally efficient way as explained in the following.

3.2. Update of ρt,f with Newton’s method

First, the equation, ∂Q/∂ρt,f = 0, can be rewritten as

exp(x) + x + a = 0, (12)

by setting

x = − 2ρt,f + log
4|d(1)

t,f |2PM
i

zi,t

ω2
i,f

,

a =
2PM

i

zi,t

ω2
i,f

 
MX
i

zi,tμ
2
i,f

ω2
i,f

− 2

!
− log

4|d(1)
t,f |2PM

i

zi,t

ω2
i,f

.

Because this is a one-dimensional nonlinear optimization problem,
it can be solved by Newton’s method in a computationally efficient
way. It is guaranteed that Newton’s method converges to a unique
solution because the left side of (12) is concave and monotonically
increasing. Furthermore, we set the initial value x0 of x at

x0 =

(
log(−a) for a ≤ −1/2

−a for a > −1/2
(13)

because (12) around the solution can be roughly approximated as
exp(x) + a = 0 when a is small, and as x + a = 0 when a is large.
Then, our preliminary experiments based on various settings showed
that Newton’s method always converged after only two iterations to
solutions that were sufficiently close to the true ones.

3.3. Dereverberation with MFCC-based prior

The second proposed method performs the dereverberation based
on MAP estimation with an MFCC-based prior. Let m̄t = [mt,1,
mt,2, . . . ]

T be an MFCC in each time frame, then we model the re-
lationship between ρ̄t and m̄t by a linear regression model (LRM)
as

ρ̄t = Am̄t + b̄ + ē , p(ē) = N (ē; 0̄, Γ), (14)

where A is an (order of ρ̄t)×(order of m̄t) matrix and b̄ is an (order
of m̄t)-dimensional column vector. ē = [e1, e2, . . . ]

T represents
the modeling error, and we assume it follows a Gaussian pdf with a
mean vector 0̄ and a diagonal covariance matrix Γ with its diagonal
components, {γ2

1 , γ2
2 , . . . }. We further assume that the values of A,

b̄, and γ2
f can be fixed in advance using a certain speech database.

Let the time series of x̄t, ρ̄t, and m̄t be x = {x̄1, x̄2, . . . },
ρ = {ρ̄1, ρ̄2, . . . }, and m = {m̄1, m̄2, . . . }, respectively, then, the
conditional pdf of the parameters c = {c̄1, c̄2, . . . }, ρ, and m given
x is represented as follows:

p(c, ρ, m|x) ∝ p(x|c, ρ)p(ρ|m)p(m), (15)

where we again disregarded the priors p(c) and p(x). On the right
side of (15), p(x|c, ρ) is equivalent to the sum of (6) for all f , p(ρ|m)
is the posterior of the speech log spectra given the MFCCs, which
can be defined by (14), and p(m) is the prior of the MFCCs.

With this method, we model an MFCC m̄t in each time frame
by using a multivariate GMM (MFCC-GMM) as follows:

p(m̄t) =
MX
i

p(i)N (m̄t; μ̄i, Ωi), (16)

where μ̄i and Ωi are the mean vector and the covariance matrix of
m̄t for each i, respectively. We assume that Ωi is diagonal with its
diagonal components, {ω2

i,1, ω
2
i,2, . . . }.

We again adopt the EM algorithm to maximize (15) and to es-
timate the parameter set composed of c, ρ, and m. The auxiliary
function is defined as

Q(θ|θ̂) = −
X

t

8><
>:
X

f

0
B@
˛̨̨
x

(1)
t,f − c̄∗T

f x̄t−D,f

˛̨̨2
exp(2ρt,f )

+ 2ρt,f

+
{ρt,f − (āfm̄t + bf )}2

2γ2
f

!
+
X

i

zi,t

X
l

(mt,l − μi,l)
2

2ω2
i,l

)
, (17)

zi,t =
p(i)N ( ˆ̄mt; μ̄i, Ωi)P
i p(i)N ( ˆ̄mt; μ̄i, Ωi)

, (18)

where āf and bf are a vector and a scalar in the f th row of A and b̄,
respectively. With the auxiliary function (17), we perform iterative
optimization as follows:

1. Initialize ρ̂t,f as ρ̂t,f = log |xt,f |.
2. Initialize ˆ̄mt as ˆ̄mt = A+(ˆ̄ρt − b̄).
3. Repeat the following until convergence.

(a) Update ˆ̄cf as ˆ̄cf = Φ̂+ ˆ̄φ.
(b) Update d̂t,f as d̂t,f = x

(1)
t,f − ˆ̄c∗T

f x̄t−D,f .

(c) Update ˆ̄mt as ˆ̄mt = Ψ̂−1 ˆ̄ψ.
(d) Update ρ̂t,f so that it satisfies ∂Q/∂ρt,f = 0.

where

Ψ̂ =AT Γ−1A +
X

i

zi,tΩ
−1
i , (19)

ˆ̄ψ =AT Γ−1(ρ̄t − b̄) +
X

i

zi,tΩ
−1
i μ̄i. (20)

As in 3(c) of the above procedure, ˆ̄mt can be updated with a closed-
form equation because the auxiliary function is in a quadratic form
with respect to ˆ̄mt. For the update of ρ̂t,f in 3(d), we can again use
Newton’s method in the same way as described in section 3.2. As a
whole, the estimation can again be accomplished in a computation-
ally efficient manner.
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Fig. 1. Example spectrograms of clean (top) and reverberated (2nd)
signals, and signals dereverberated with an LS-based prior (3rd) and
an MFCC-based prior (bottom) when the number of iterations was
five.

4. PRELIMINARY EXPERIMENT

To test the effectiveness of the proposed methods, we used 30 ut-
terances of a single male speaker for evaluation. The length of an
utterance was 2.3 sec on average (min: 2.09 sec and max: 2.8 sec).
The observed signals were synthesized by convolving each utterance
with 2-ch room impulse responses (RIR) measured in a reverberant
room with a reverberation time (RT60) of 0.5 sec. To evaluate the
dependence of dereverberation performance on the length of the ob-
servation, we prepared two more utterance sets. In one set, each ut-
terance in the above original set was separated into two utterances at
its center time, resulting in 60 utterances (average length: 1.15 sec).
In the other set, we concatenated 30 pairs of same utterances in the
original data set, resulting in 30 utterances (average length: 4.6 sec).
In both sets, the RIRs were convolved separately with each utter-
ance. Dereverberation was performed for each utterance, and the
performance was evaluated in terms of the cepstral distortion (CD).
See [3] for the definition of a CD.

The log-spectral GMM in the first proposed method and the
LRM and the MFCC-GMM in the second proposed method were
trained on 500 utterances from the same speaker1. We set the orders
of the log spectrum ρ̄t and the MFCC m̄t at 257 and 13, respectively,
and set the number of mixture components M in the GMMs of both
proposed methods at 256.

Example spectrograms of a speech signal before and after dere-
verberation are shown in Fig.1, and indicate that the time and fre-
quency structure of the signal was clearly recovered by both pro-
posed methods. Figure 2 compares the conventional dereverberation
method with no spectral priors and the two proposed methods in
terms of CDs depending on the number of EM iterations. The iter-
ation number 0 means the observed signal. Next, the CDs obtained
with all 3 methods were the same after the first iteration because the
speech log-spectral priors were not used at the first update of the
regression coefficients ˆ̄cf . After the second iteration, the method

1Here, to exclude the effect of early reflections in the preliminary experi-
ments, each utterance was convolved with the early-reflection components of
the above RIRs before the training.
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Fig. 2. Average CDs obtained by the conventional method with no
spectral priors and by two proposed methods (LS and MFCC), de-
pending on the number of EM iterations when the length of the ob-
servation was 1.15 sec (left), 2.3 sec (center), and 4.6 sec (right).

without priors gradually increased the CDs with increased iteration
number particularly in the shortest observation case. In contrast, the
two proposed methods improved the CDs much more than the con-
ventional method with no priors when the iteration number exceeded
one. In particular, they barely increased the CDs even after several it-
erations using the shortest observation. These results clearly demon-
strate the effectiveness of the introduction of the speech log-spectral
priors.

5. CONCLUSION

We proposed dereverberation methods based on the IS distance min-
imization with two different speech log-spectral priors, namely an
LS-based prior and an MFCC-based prior. Preliminary experiments
revealed that, in terms of cepstral distortion, the two proposed meth-
ods can improve the quality of the dereverberated signals much more
than the conventional dereverberation method with no spectral pri-
ors after more than one EM iteration. Future work should include
a comprehensive evaluation of the proposed methods under differ-
ent observation conditions, including noisy observation cases. In
addition, it would be very interesting to use the proposed approach
to combine the IS distance measure with GMM-based log-spectral
priors and the other speech enhancement approaches based on IS
distance minimization.
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