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ABSTRACT

In this paper, a new multichannel approach to robust loudspeaker–
room equalization is presented. Traditionally, the equalization (or
room correction) problem has been treated mostly by single-channel
methods, with loudspeaker signals being prefiltered individually by
separate scalar filters. Single-channel methods can generally im-
prove the average spectral flatness of the acoustic transfer functions
in a listening region, but the variability of the transfer functions
within the region cannot be affected.

Most modern audio reproduction systems, however, contain two
or more loudspeakers, and in this paper we aim at improving the
equalization performance by using all available loudspeakers jointly.
To this end we propose a general MIMO formulation of the problem,
which is a multichannel generalization of an earlier single-channel
approach by the authors. The new approach is found to reduce the
average reproduction error and the spatial variability of the acoustic
transfer functions. Moreover, pre-ringing artifacts are avoided, and
the reproduction error below 1000 Hz is significantly reduced with
an amount that scales with the number of loudspeakers used.

Index Terms— Acoustic signal processing, audio systems,
equalizers, MIMO, polynomials.

1. INTRODUCTION

Equalization of the loudspeaker–room response by means of digital
filters has been an agile research area for decades. So far, mainly
single-channel methods have been proposed and implemented, see
e.g., [1]. However, in most audio systems, two or more loudspeak-
ers are in general available, and an interesting question is whether
(and how) room correction systems can be amended by using all
loudspeakers in a joint design [2]. Several different approaches for
controlling room modes and equalizing the room transfer functions
based on multi-channel methods have been proposed [2–6].

In summary, the proposed methods can be grouped into three
categories. The first includes methods based on physical insight
about room acoustics and room modes, and it is well known that
loudspeaker placement and the use of several subwoofers is critical
to reduce the effect of room modes [4]. Another principle often used
is the source-sink method [2, 5], where symmetrically positioned
subwoofers are optimized so as to reduce room modes, by means
of delay-, gain- and phase adjustments to the different channels. The
evaluation is mostly performed by means of finite-difference time-
domain (FDTD) simulations. A third important method is modal
equalization [6], in which modal resonances and their decay times
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are controlled by digital prefilters. For a summary of different room
correction procedures, see e.g., [1, 3].

In this paper, we propose a general multiple-input multiple-
output (MIMO) formulation of the equalization problem, as an
extension to an earlier single-channel approach by the authors [7,8].
The aim is to improve the reproduction quality of an audio sys-
tem by using all available loudspeakers jointly, employing not only
channel inversion but also sound field superposition to reach the
desired target response of each loudspeaker. Our approach makes
use of a polynomial-based control systems framework, and offers
a joint solution to the problems of loudspeaker–room equalization
and bass management. The reproduction error and spatial variations
of the acoustic transfer functions are substantially reduced and the
performance scales with the number of loudspeakers used, with the
most prominent effect being attained at low frequencies. Moreover,
the suggested solution is robust to modeling errors and pre-ringing
artifacts are avoided.

Remarks on the notation: Filters and acoustic transfer functions
are represented by polynomials and rational functions in the back-
ward time-shift operator q−1, (q−1s(k) = s(k − 1)), where q−1

corresponds to z−1 or e−jω in the frequency domain. A polynomial
(polynomial matrix) is denoted by italic capital (bold italic capital)
letters as P (q−1) = p0 + p1q

−1 + · · · + pnP q
−nP (P (q−1) =

P0+P1q
−1+ · · ·+PnP q

−nP ). Rational matrices are represented
by right matrix fraction descriptions (right MFDs), and are indi-
cated by bold calligraphic letters as G(q−1) = Q(q−1)P−1(q−1).
Scalar rational functions are denoted by normal calligraphic letters
as G(q−1). For any polynomial (or polynomial matrix), its conju-
gate is defined as P∗(q) = P (q) = p0 + p1q + · · · + pnP q

nP (or
P ∗(q) = P T (q) = PT

0 +PT
1 q+· · ·+PT

nP
qnP ), and its reciprocal

is defined as P (q−1) = q−nP P∗(q) (or P (q−1) = q−nP P ∗(q) ).
The arguments q−1, q, z−1, z etc. are often omitted if there is no
risk of misunderstanding. A matrix having p rows and l columns
is said to be of dimension p|l. The notation diag(v), for a column
vector v, represents a diagonal matrix with the elements of v along
the diagonal.

2. PROBLEM STATEMENT

We consider an acoustic environment with l loudspeakers positioned
around a bounded three-dimensional listening region Ω ⊂ R

3 in a
room. A target impulse response is defined for one of the loudspeak-
ers, here called the primary loudspeaker, to be attained in p spatial
positions witin Ω. In order to improve the mean square error per-
formance at the measurement positions, l − 1 support loudspeakers
are introduced. By the use of l phase compensation filters, applied
individually to each loudspeaker, in conjunction with a stable and
causal MIMO compensator, significant improvements relative to the
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single-channel case can be attained. Before taking on the MIMO
set-up we shall first consider the single-channel case.

2.1. Background: The single-loudspeaker case
In [7] a mixed phase single-loudspeaker compensation was consid-
ered in a single-input multiple-output (SIMO) setting, using a gen-
eral polynomial matrix framework. A further robustification of the
SIMO problem was considered in [8], where a probabilistic error
model was introduced for handling errors and unmeasured spatial
variations in the acoustic transfer functions. It was shown in [7] that
in order to avoid pre-ringing artifacts in the compensated system, the
scalar mixed phase prefilter is required to contain an allpass link as
a factor. We shall here briefly recall this result. Let the error signal
of a SIMO system be expressed as

y(k) =
D(q−1)

E(q−1)
w(k)− B(q−1)

A(q−1)
R(q−1, q)w(k) (1)

where

D(q−1) =
[
D1(q

−1) · · ·Dp(q
−1)
]T

B(q−1) =
[
B1(q

−1) · · ·Bp(q
−1)
]T

.
(2)

Here w(k) is a scalar stationary white noise sequence having zero
mean and covariance E{w2(k)} = ψ, D/E and B/A are the tar-
get and actual room transfer functions (RTFs), E and A being stable
(i.e., minimum phase) polynomials whereas R is a (possibly non-
causal) scalar feedforward compensator. The objective of R is to
minimize the sum of powers of the p error signal components in
y(k), i.e., to minimize J = E{tr [y(k)yT (k)

]}. According to
Lemma 1 of [7], a mixed phase compensator R that does not gener-
ate pre-ringing errors must have the special structure

R(q−1, q) = q−dF ∗(q)
F∗(q)

R1(q
−1) = q−dF∗(q)R1(q

−1) (3)

where F is such that the zeros of F (z−1) are the common excess
phase zeros of B1(z

−1), . . . , Bp(z
−1). Since the zeros of F (z−1)

are reciprocal (with respect to the unit circle) to those of F (z−1)
we have that F(q−1) = F (q−1)/F (q−1) is a causal allpass filter
and its conjugate F∗(q), which appears in (3), is thus a noncausal
allpass filter. In (3), R1(q

−1) is a stable and causal filter and d con-
stitutes the so-called modeling delay in D(q−1), or equivalently, the
“smoothing lag” of the compensator. The MSE-optimal mixed phase
compensator (3) for the SIMO system (1)–(2) is hence given by a
conjugated allpass link in series with a causal filter. The function of
the allpass filter is to remove any group delay distortion that is com-
mon to all positions in the spatial region of interest. The above con-
stitutes a necessary and sufficient structural constraint for a mixed
phase compensator to avoid pre-ringing artifacts.

2.2. Multichannel extension: Introducing support loudspeakers
While [7, 8] considered robust mixed phase audio compensation by
means of a single loudspeaker, we here consider a more general set-
ting, where support loudspeakers are introduced in order to help at-
taining the ideal target RTF defined for the primary loudspeaker. We
thereby obtain a multiple-input multiple-output (MIMO) system for
which a mixed phase compensator should be designed. The deriva-
tion of this compensator is presented next.

The acoustic signal propagation between the l loudspeakers and
p positions in Ω is modeled by a p|l-dimensional rational matrix
H(q−1), which can be decomposed as

H(q−1) = H0(q
−1) + ΔH(q−1) (4)

where H0(q
−1) is the nominal model, representing those com-

ponents of the transfer functions that are “spatially smooth” and
therefore well captured by spatially sparse transfer function mea-
surements. The additive part ΔH(q−1) is partly parameterized
by random variables, and represents components that are not fully
captured by the measurements. Typically, these spatially complex
components consist of late room reflections and reverberation at
high frequencies. Writing out the matrix fractions for H(q−1) and
ΔH(q−1), the decomposition (4) of H(q−1) expands into

H = B0A
−1
0 +ΔBB1A

−1
1

= (B0A1 +ΔBB1A0)(A0A1)
−1

= (B̂0 +ΔBB̂1)(A0A1)
−1 � BA−1

(5)

where B̂0 = B0A1, B̂1 = B1A0, B = B̂0 + ΔBB̂1, and
A = A0A1. The matrices B0, ΔB and B are of dimension p|l,
whereas B1, A0, A1 and A are of dimension l|l. The elements
of ΔB are polynomials with stochastic variables as coefficients and
B1A

−1
1 is a filter for shaping the spectral distribution of the stochas-

tic uncertainty model. The denominators A0, A1 and A are further
assumed to be diagonal; from a physical modeling perspective this
is no restriction, see [9]. For a general introduction to the above
probabilistic modeling framework, the reader is referred to [10] and
references therein. A detailed discussion of why and how this frame-
work applies in the present acoustic context is given in [9].

Since (3) is a structural requirement for avoiding pre-ringing in
the SIMO case, a sufficient condition for obtaining a solution with-
out pre-ringing in the MIMO case is to apply l noncausal phase com-
pensation filters F1∗, . . . ,Fl∗, designed similarly as in the SIMO
case, to each of the l loudspeakers, and then design a full causal and
stable MIMO compensator R1 such that the target RTF of the pri-
mary loudspeaker is attained with minimum error. The role of the fil-
ters F1∗, . . . ,Fl∗ is to remove group delay distortions that are com-
mon and systematic throughout Ω for each loudspeaker. The role of
R1 is to superimpose all the individual phase-corrected loudspeaker
responses in an optimal way, such that the overall sum response be-
comes closer to the target RTF than if the primary loudspeaker would
have been used alone.

Now consider the MIMO system

y(k) = D(q−1)w(k)−H(q−1)u1(k) (6)

where

D(q−1) =
D(q−1)

E(q−1)
= q−d0 D̃(q−1)

E(q−1)
(7)

is the target RTF, of dimension p|1. In D̃(q−1) above, at least one
of the polynomial elements is assumed to have a nonzero leading
coefficient; the second equality in (7) is included to emphasize that
D(q−1) contains an initial modeling delay of d0 samples. Further-
more, H(q−1) in (6) is given by (4)–(5) and u1(k) is given by

u1(k) = R(q−1, q)w(k) = Δ̃(q−1)F∗(q)u(k)

= Δ̃(q−1)F∗(q)R1(q
−1)w(k)

(8)

where

Δ̃(q−1) = diag

([
q−(d0−d1) · · · q−(d0−dl)

]T)
F(q−1) = diag

([
F 1(q

−1)

F1(q−1)
· · · F l(q

−1)

Fl(q−1)

]T)
R1(q

−1) =
[R11(q

−1) · · · R1l(q
−1)
]T

.

(9)
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Analogously to the SIMO case, the matrix F(q−1) is here con-
structed from excess phase zeros that are common among the RTFs
of each loudspeaker for all measurement positions in Ω. That is, the
elementsB1j , . . . , Bpj of the jth column of B are assumed to share
a common excess phase factor F j(q

−1).
In (9), d0 is the same as in (7) and constitutes the primary bulk

delay (or smoothing lag) of the compensated system, whereas dj ,
j = 1, . . . , l are individual delays that can be used to compensate for
individual discrepancies in distances among the different loudspeak-

ers. Since Δ̃(q−1)F∗(q) is fixed and known it can be regarded as a

factor of an augmented system H̃(q−1), see Fig. 1,

H̃(q−1) � H(q−1)Δ̃(q−1)F∗(q) = B̃(q−1)A−1(q−1) (10)

where B̃(q−1) = B(q−1)Δ̃(q−1)F∗(q) is still a polynomial ma-
trix (i.e., not a rational matrix), due to cancellation of factors be-
tween B and F∗. The second equality of (10) is allowed because

A, Δ̃ and F∗ are diagonal, see (5) and (9). In order to attain the
primary loudspeaker target RTF, the objective is to find the optimal
MIMO causal and stable compensator R1(q

−1), see (8)–(9), that
minimizes the criterion

J = Ē{tr E[(V y)(V y)T ]}+ tr E[(Wu)(Wu)T ] . (11)

Here Ē and E denote, respectively, expectation with respect to the

R1(q
−1) F∗(q) Δ̃(q−1) H0(q

−1)

ΔH(q−1)

V (q−1)

D(q−1)

W (q−1)

��
��∑

�

�

� �

�

� �

�

� �

�

�

�

w(k) u(k) u1(k) y(k) z1(k)

z2(k)

−

+

Fig. 1. Block diagram of the constrained MIMO equalizer design.
The thin lines represent scalar signals, and the thick lines represent
vector-valued signals of dimension l or p.

uncertain parameters in ΔB, see (5), and the driving noise w(k),
whereas the filters W and V , of dimension p|p and l|l, constitute
weighting matrices for the control and error signals, respectively.
We are now ready to state the main result.

Theorem 1. Consider the system (4)–(7), (10) and the controller
structure R(q−1, q) defined in (8). The optimal stable and causal
compensator, which minimizes (11), without residual preringings, is
then given by

R1 = Aβ−1Q
1

E
(12)

where β, of dimension l|l, is the unique (up to a unitary constant
matrix) stable spectral factor of

β∗β = Ē{B̃∗V ∗V B̃ +A∗W ∗WA} (13)

with B̃, of dimension p|l, being as in (10). The polynomial matrix
Q, together with a polynomial matrix L∗, both of dimension l|1,
constitute the unique solution to the Diophantine equation

Ē{B̃∗}V ∗V D = β∗Q+ qL∗E (14)

with generic degrees degQ = max(degV + degD, degE − 1)

and degL∗ = max(deg Ē{B̃∗}+ degV ∗, degβ∗)− 1.

Proof. Immediate from Theorem 4 of [10] by appropriate substitu-
tions and by setting the delay parameter m and all uncertainty mod-
els equal to zero, except ΔGT (q−1).

Using the “bracket operator” {·}+ for expressing the causal part
of a rational function, the filter R1 above can be written as R1 =
Aβ−1{β−1

∗ FΔ̃∗B̂0∗V ∗V D/E}+, and the total compensator R
in (8) becomes

R = Δ̃F∗Aβ−1

{
β−1

∗ FΔ̃∗B̂0∗V ∗V D
1

E

}
+

. (15)

This expression is readily verified to reduce to the scalar solution
presented in [8], in the case when no support loudspeakers are used,
i.e., if l = 1 in the present design.

3. A DESIGN EXAMPLE

The filter design proposed above is now experimentally assessed us-
ing impulse responses of a simulated multichannel system in a rect-
angular room.

3.1. Experimental Conditions

A 64|6 transfer function matrix H describing a 6-channel audio sys-
tem was generated using a 25th-order image source model. The di-
mensions (W×L×H) of the simulated room was 5×6×3 m and the
wall reflection coefficient was 0.8. The loudspeakers were modeled
as point sources located at a distance of 1.8 m around a cubic volume
Ω of 30×30×30 cm. Loudspeakers 1, 2, 3, 5 and 6, positioned in a
horizontal plane in a “surround” fashion, are labeled Left (L), Cen-
ter (C), Right (R), Right Surround (RS), Left Surround (LS). Loud-
speaker 4, labeled Top (T), was placed close to the ceiling, straight
above Ω. The receiver positions, or control points, were distributed
on a uniform grid with 10 cm spacing, covering Ω with totally 64
points. Element (i, j) of H was obtained by evaluating the image
source model for source j at control point i, for i = 1, . . . , 64 ;
j = 1, . . . , 6. For details about the simulation algorithm, see [9, Ap-
pendix A]. The elements of F∗ in (8) were constructed by applying
the framework of [7] to each of the 6 loudspeakers. The uncertainty
model ΔH in (4) was constructed along the lines of [8, 10]. The
penalty matrix W was designed so as to prohibit the use of support
loudspeakers above 1200 Hz. As a primary source we have selected
loudspeaker (L), and the target function D(q−1) in (7) thus contains
a set of delayed ideal pulses: Di(q

−1) = q−d0−Δi , where Δi is the
natural acoustic propagation delay between loudspeaker (L) and the
ith control point. Based on model data obtained as above, the perfor-
mance of five different compensators, employing various numbers of
support loudspeakers, were assessed.

3.2. Results and discussion
From Fig. 2 it is clear that the reproduction error (defined as the dif-
ference between the target response and attained system responses)
decreases significantly by the introduction of support loudspeak-
ers. It is particularly noticeable when adding the first support
loudspeaker (C), and also when the top loudspeaker (T) is added
(4th curve from the top). Note that the contribution of the support
loudspeakers is significant up to 400–500 Hz. Above 500 Hz the im-
provement is diminishing. Fig. 3 displays the magnitude frequency
response of the primary loudspeaker and in Fig. 4 a single-channel
compensation of the primary loudspeaker with a flat (0 dB) target
is depicted. Clearly, in Fig. 4, the average response is relatively flat
up to ∼1000 Hz although there is a significant variability among
the measurement points. Note also that there is a significant bias in
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Fig. 2. The RMS error as a function of frequency, averaged over
343 points (grid spacing 5 cm) in Ω. The curves show, from top to
bottom, the attained reproduction error for an increasing number of
support loudspeakers: 1st (loudspeaker L, light grey, single-channel
compensation of the primary speaker), 2nd (L+C), 3rd (L+C+R), 4th
(L+C+R+T), 5th (all six loudspeakers, black curve)

Fig. 3. Frequency responses of the uncompensated primary loud-
speaker, evaluated in the 64 control points (grey lines) and their RMS
average (black line).

the RMS value (∼3dB) below the target in the same frequency re-
gion. By adding all the six support loudspeakers both the bias in the
average RMS value and the variability is dramatically reduced, see
Fig. 5. This suggests that the use of support loudspeakers can help
the primary loudspeaker attaining its target response significantly.

4. CONCLUDING REMARKS

A new approach to loudspeaker–room equalizer design, inspired by
concepts in multivariable robust control, has been presented. The ob-
tained filters were shown to yield good results in a simulated acous-
tic environment. Investigations concerning the application to real
audio systems, with associated psychoacoustic considerations, are
under way. We anticipate that the use of support loudspeakers will
improve the listening experience considerably in both stereo and sur-
round settings.
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