
SPEED OF SOUND AND AIR TEMPERATURE ESTIMATION
USING THE TDOA-BASED LOCALIZATION FRAMEWORK

Paolo Annibale and Rudolf Rabenstein

University of Erlangen-Nuremberg
Multimedia Communications and Signal Processing

Cauerstr. 7 D-91058, Erlangen

ABSTRACT

Spatially distributed acoustic sensors find increasingly new ap-
plications in speech-based human-machine interfaces. One well
researched topic is the localisation of an emitting source from Time-
Difference-Of-Arrival (TDOA) measurements. This manuscript
shows how to exploit the source localization framework and its state
of the art techniques to accurately estimate the actual sound speed
and the air temperature by measuring TDOAs of an unknown located
acoustic source. Simulations and experiments show the validity of
the proposed method.

1. INTRODUCTION

The dependence of the speed of sound on the temperature of the
propagation medium is well known in acoustics. It has been often
exploited for investigations on the average temperature and spatial
temperature distributions. For instance in [1] by knowing emitter and
receiver positions a tomography approach is used to measure temper-
ature and wind velocity. In contrast, the approach taken here does
not require to know the source position or the source signal, neither
does it require synchronization between emitter and receiver. It starts
from a well researched area, the localization of sound sources like
human speakers. Due to the lack of synchronization between source
and receiver, the absolute time of flight of the sound waves cannot be
estimated. However, Time-Difference-Of-Arrival (TDOA) between
different sensors can be estimated well by suitable signal correlation.
TDOA-based methods are well established in source localization [2],
a valuable review can be found e.g. in [3]. Most of these localiza-
tion methods assume known propagation speed, which is a reliable
assumption only under laboratory and controlled conditions. Meth-
ods which give a position estimate jointly with an estimate of the
signal propagation speed are presented e.g. in [4–6]. Unfortunately
in noisy conditions the so-obtained speed estimate turns out to be un-
satisfactory and thus they are not suitable for temperature estimation
purpose. The authors proposed in [7] a novel method to estimate
the propagation speed and the corresponding air temperature from
TDOAs measured by a sensor array.

This manuscript presents a comparison between such a novel
method and related methods by means of simulations with the
Cramer-Rao Bound (CRB) and real measurements with a new 3D
microphone array. The manuscript is structured as follows. In Sec. 2
an overview of the source localization problem is given and some
standard source localization methods are reviewed, also methods for
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joint localization and propagation speed estimation are presented.
Sec. 3 describes thoroughly the proposed method for estimating the
propagation speed. Sec. 4 is devoted to simulation and experimental
results. Finally in Sec. 5 conclusions are drawn.

2. SOURCE LOCALIZATION METHODS

When the absolute time delay between source and receiver is not
available due to lack of synchronization the passive localization of
an emitting source can be still performed by exploiting the Time-
Difference-Of-Arrival (TDOA) between different receivers.

2.1. TDOA-Based Source Localization Problem

Consider the Euclidean space of D = 2, 3 dimensions. For sake
of simplicity the following description refers to the case D = 2
depicted in Fig. 1. The acoustic source to be localized lies in an
unknown position x = [x y]T and the M sensors of the array are
distributed at the known positions ai = [xi yi]

T with i = 0, · · · , N
and N = M − 1. Let τi,j indicate the time differences of arrival
between the sensor ai and the reference sensor aj . The (M×N)/2
independent TDOAs τi,j for 0 ≤ j < i ≤ M are usually referred as
the full TDOA set [8]. A special subset of the full set, the so-called
spherical TDOA set, is mostly employed for localization. It can
be obtained with respect to an arbitrary reference sensor aj , if the
sensor a0 is chosen as reference, then the corresponding spherical
set consists of the values τi,0, i = 1, · · · , N . Here the vectors
τj , j = 0, . . . , N represent spherical sets with respect to different
reference sensors aj , j = 0, . . . , N (see colored graphs in Fig. 1).

The TDOA-based localization problem consists of finding x

given the sensor positions ai and one of the mentioned TDOA sets,
e.g. the spherical set τ0 = [τ1,0 . . . τN,0]

T. Each TDOA of the set
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Fig. 1: Geometry of the two-dimensional source localization problem using
a sensor array. The extension of the array is large enough to infer the source
distance from the circular wave front. The left figure shows in red the graph
corresponding to the set τ0 while the right figure shows in green the graph
corresponding to the set τ1.
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τ0 can be expressed in terms of the travelled range difference as

τi,0 =
1

c
di,0 , i = 1, · · · , N , (1)

where c is the signal propagation speed and di,0 denotes the source’s
range difference between the sensor ai and the reference sensor a0

as shown in Fig. 1 left. Here the speed value c is assumed to be
known, even though it might be unknown (see Sec. 2.2.3). Without
loss of generality the reference a0 is assumed to be in the origin,
then from geometrical reasoning (see Fig. 1 left) follows that

di,0 = ||x|| − ||x− ai|| , i = 1, · · · , N , (2)

where || · || denotes the Euclidean vector norm. The candidate posi-
tion x must fulfill the above N equations.

2.2. Previous Works

It is well known, e.g. from [2,9], that by squaring Eq. (2) the follow-
ing simpler set of equations can be obtained

a
T

i x+ di,0||x|| =
||a2

i || − d2i,0
2

, i = 1, · · · , N . (3)

The corresponding system of equations is described in matrix form
as follows

Φy(x) = b , (4)

y(x) =

[
x

||x||

]
, Φ =

[
A d0

]
, (5)

b =

⎡
⎢⎣
b1
...
bN

⎤
⎥⎦ , d0 =

⎡
⎢⎣
d1,0

...
dN,0

⎤
⎥⎦ , A =

⎡
⎢⎣
aT

1

...
aT

N

⎤
⎥⎦ , (6)

bi =
1

2

(
||ai||

2 − d2i,0
)
. (7)

Solving the system in (4) is an estimation problem since the el-
ements of A and d0 are subject to uncertainties, i.e. Φy(x) ≈ b.
Typically the sensor positions ai of a well constructed sensor array
are considered to be exactly known, whereas the range differences
di,0 are from (1) where the values τi,0 are noisy correlation results.
To avoid the direct solution of such a nonlinear estimation problem
closed-form localization methods have been devised which provide
approximate solutions in a linear fashion.

2.2.1. Unconstrained Least Squares Method (ULS)

Introducing a new scalar variable r independent of x in place of the
norm ||x|| enables to address the problem as a linear least squares
estimation of the unknown vector y = [x r]T, where the last ele-
ment no longer depends on the other vector elements. Provided that
N ≥ D + 1, such a least squares estimate is given in terms of the
pseudo-inverse Φ

†

ŷ =

[
x̂

r̂

]
= Φ

†
b = (ΦT

Φ)−1
Φ

T
b . (8)

This estimate should be considered an approximate solution of (4)
since y is the relaxed or rather unconstrained [10] version of the
vector y(x) and in general r̂ �= ||x̂||.

In [11] it is given an alternative expression of the above esti-
mate which separates range and position estimations and shows the
dependency on the assumed propagation speed c

r̂(c) =
1

c
Θb(c) , x̂(c) = Γb(c) , (9)

where the matrices

Θ = (P⊥
A τ0)

† , Γ = (P⊥
τ0
A)† , (10)

are obtained from the orthogonal projectors shown in [11] and the
vector b(c) is simply obtained by using (1) in (7).

2.2.2. Constrained Least Squares Method (CLS)

Constrained methods aim at a more accurate localization by find-
ing an estimate ỹ = [x̃ r̃]T which obeys the constraint between
range and position, i.e r̃ = ||x̃||. The constrained least squares so-
lution of (4) may be obtained employing the Lagrange multipliers
technique [10]. More attractive is its linear approximation which
benefits from the closed-form estimate given in [3]. By defining the
residual vector ε(x̂) and the Jacobian matrix J = ε′(x̂)

ε(x̂) = Φδ , J = ε
′(x̂) = ΦG , (11)

with

δ =

[
0

||x̂|| − r̂

]
, G =

[
I

x̂
T

||x̂||

]
, (12)

the linear approximation of the constrained estimate x̃ reads

x̃ = x̂− J
†
Φδ . (13)

2.2.3. Joint Position and Speed Estimation

For in-air propagation with strong temperature variations or in-solid
scenarios the propagation speed might be unknown. Therefore lo-
calization methods have been devised which estimate the position
jointly with the signal propagation speed.

Some authors [4–6] form from Eq. (2) a linear system in D +
2 unknowns, from which a speed estimate is obtained by means
of an unconstrained least squares estimation of D + 2 unknowns.
This method is basically an extension of the ULS from Sec. 2.2.1
but unfortunately the so-obtained system matrix might be easily ill-
conditioned as shown e.g. in [12]. Moreover the speed estimate
tends to be unreliable even if the localization result is decent.

In [12] it is shown that more robust results for the speed estima-
tion can be obtained by assuming plane wave propagation. However
the so-obtained estimate is affected by a bias when the source is close
to the array and the plane wave approximation no longer applies.

3. NOVEL SPEED ESTIMATION METHOD

A different approach to estimate the propagation speed has been re-
cently proposed by the authors in [7]. In ideal conditions and know-
ing exactly the actual propagation speed (denoted here as c◦), the
vector ε(x̂) = Φδ from (11) vanishes since r̂ = ||x̂||. On the
other hand when c �= c◦ such a vector engenders a systematic de-
viation between the unconstrained and constrained solutions. Using
Eqns. (9) it may be expressed as function of the assumed speed c,
i.e.

ε(c) = Φ(c)

[
0

δ(c)

]
= cδ(c)τ0 , (14)

with

δ(c) = ||x̂(c)|| − r̂(c) = ||Γb(c)|| −
1

c
Θb(c) . (15)

Then the value ĉ which annihilates the vector in (14) has to be equal
to the actual propagation speed c◦ as Eqns. (9) provide compatible
estimates r̂ and x̂. Indeed the searched speed value has to be a zero
of the scalar function δ(c) (the trivial solution ĉ = 0 of (14) is not
of interest). The next section shows an efficient way to find such a
speed value in acoustic applications.

230



3.1. Speed of Sound and Air Temperature Estimation

The function δ(c) involving the Euclidean norm of x̂ is nonlinear,
therefore applying a root-finding algorithm might be demanding.
Nonetheless near to the actual propagation speed c◦ it can be shown
that such a function has a fairly linear behavior [7]. This means that
given a reliable initial guess c̄, the following first order Taylor ex-
pansion is a useful approximation

δ(c) ≈ δlin(c) = δ̄ + δ̄′(c− c̄) , (16)

with

δ̄ = δ(c̄) and δ̄′ =
dδ(c)

dc

∣∣∣∣
c=c̄

. (17)

Consider now an acoustic scenario and the problem of estimat-
ing the actual speed of sound from microphone measurements, in
many cases a reliable initial guess for the speed of sound can be ob-
tained from the standard air temperature value of θ̄ = 20 ◦C and the
well-known formula

c̄ = 331
m

s
+ 0, 6

m

s ◦C
θ̄ . (18)

Then the actual speed can be inferred with enough accuracy from the
zero-crossing of the linearized function δlin(c) = 0. The searched
sound speed value is given by

ĉ =
δ̄ − δ̄′c̄

δ̄′
. (19)

The value of the first order derivative at c̄ can be calculated with
derivation rules from (15)

δ̄′ =
x̂(c̄)T

||x̂(c̄)||
Γb̄

′ +
r̂(c̄)

c̄
−Θ

b̄′

c̄
, (20)

where x̂(c̄) and r̂(c̄) are the unconstrained estimates of position and
range obtained with the initial guess c̄ while b̄′ is a vector containing
the derivatives of (7) evaluated at c = c̄.

Finally the so-obtained estimate ĉ of the speed of sound can be
converted using (18) into an average value of the air temperature in
the volume enclosing the sensor array. This methodology is applied
in the experimental part described in Sec. 4.

3.2. Extension to the Full TDOA Set

So far the used spherical TDOA set τ0 has been derived with re-
spect to the reference sensor a0 but actually the localization can be
carried out in much the same way regarding an arbitrary spherical
set τj different from τ0. As a consequence the scalar function δ(c)
in (15) can be built for all TDOA sets τj . Then in noisy conditions
an improved speed estimate can be found as the minimizer in the
least squares sense of such functions, i.e. the corresponding least
squares criterion is

N∑
j=0

δj(c)
2 =

N∑
j=0

(||x̂j(c)|| − r̂j(c))
2 , (21)

where x̂j and r̂j are unconstrained estimates of position and range
obtained using the spherical set τj . In practice the proposed speed
estimation method has been straightforwardly extended to exploit
the full TDOA set since the required spherical sets τj , j = 0, . . . , N
can be generated from the elements of the full TDOA set.

4. SIMULATION AND EXPERIMENTAL RESULTS

The simulated scenario considers a source lying in the xy-plane at
a fixed distance of 1.5 m from the center of a sensor array. A reg-
ular distribution of M = 10 sensors simulates the real cross array
used for the experiments (see Fig. 3). The standard deviation of the
error corrupting the ideal TDOA vector τ◦ is set to be σ = 10 ms
as in [13]. The source’s bearing angle is sampled homogeneously at
48 positions and for each position bias and variance of the estima-
tion are obtained over 1000 Monte Carlo trials. The speed estima-
tion is carried out with the methods from [5] and [12] discussed in
Sec. 2.2.3 and the novel one from Sec. 3. Here they are referred to
as ULS extended, ULS extended (plane wave) and proposed method
respectively. Fig. 2 shows the corresponding results along with the
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Fig. 2: Simulation results of the propagation speed estimation.

Cramer-Rao Bound (CRB) plotted against the source bearing. The
CRB is employed here as a lower bound on the variance of any un-
biased speed estimator according to [4]. The ULS extended suffers
from a huge variance (which is out of the displayed range) and it
is completely unreliable at certain angles. Thus it is not suited for
speed estimation purpose and it will not be further considered in the
experimental part. The ULS extended (plane wave) as expected suf-
fers from a bearing-dependent bias since the source lies quite close
to the sensors. This effect is evident at the odd multiples of π

4
due

to the regular geometry of the array. The proposed method outper-
forms the others in terms of bias and variance. It is quite unbiased
regardless of the source bearing and its variance attains the lower
CRB corresponding to the full TDOA set.

Real measurements have been carried out in order to prove the
practical validity of the presented theory. To this end room temper-
ature estimates were derived from the TDOA-based sound speed es-
timation while the actual room temperature was measured by means
of an electronic thermometer at the position of one loudspeaker. The
experimental setup visible in Fig. 3 consists of a cross sensor array
of M = 10 microphones with a maximum arm length of 0.35 cm
positioned at the center of a circular 48-loudspeaker array with ra-
dius 1.5 m. White noise signals were sequentially emitted by the
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Fig. 3: Setup of temperature estimation experiment. The heater on the left
was used to raise the room temperature from 22.1 ◦C to 27.0 ◦C.

loudspeakers in order to obtain by signal correlation (GCC-PHAT)
TDOAs corresponding to 48 source’s bearing angles. From these
TDOAs a temperature estimate was derived for each bearing angle
using the ULS extended (plane wave) [12] and the proposed method.
The experiment was conducted twice. The first time the room tem-
perature measured with the thermometer was 22.1 ◦C, the second
time the room temperature was raised to 27.0 ◦C thanks to the heater
visible in Fig. 3. The collected results are displayed in Fig. 4. In ac-
cordance with the simulations the plane wave approximation yields
a strong bias at the odd multiples of π

4
which leads to unacceptable

temperature values. On the other hand the proposed method pro-
vides reliable results regardless of the source bearing. The estimated
temperatures are always around and close to the actual room temper-
atures (22.1 ◦C and 27.0 ◦C).
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Fig. 4: Results of the temperature estimation experiments. The temperature
estimates obtained with the proposed method are always around and close to
the actual room temperatures (22.1 ◦C and 27.0 ◦C).

5. CONCLUSIONS

This paper addresses the problem of estimating the signal propaga-
tion speed from TDOAs measured by spatially distributed sensors.
The presented theory relies on the source localization framework, as
a practical case the estimation of the speed of sound and the corre-
sponding air temperature by means of a microphone array has been
considered. Simulations and experimental results show that the pro-
posed method is by far the most reliable and accurate.
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