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Abstract— A fundamental task for a robotic audition system
is sound source localization. This paper addresses the local-
ization problem in a robotic humanoid context, providing a
novel learning algorithm that uses binaural cues to determine
the sound source’s position. Sound signals are extracted from
a humanoid robot’s ears. Binaural cues are then computed
to provide inputs for a neural network. The neural network
uses pixel coordinates of a sound source in a camera image
as outputs. This learning approach provides good localization
performances as it reaches very small errors for azimuth and
elevation angles estimates.
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I. INTRODUCTION

Robots and intelligent systems are becoming more and

more reliable as partners in the humans’ everyday life. Nowa-

days, it has become possible to envision machines in social

interaction. For that purpose, sound is of particular interest.

Indeed, a sound signal holds various information: sound

sources identities, their spatial locations and the contents of

the emitted sounds. This brings to the fore multiple problems

that an artificial audition system has to deal with, like Voice

Activity Detection (VAD), speaker and speech recognition,

sound source separation and localization.

Sound source localization has been widely studied in

the last few decades. Most of the previously built sys-

tems use microphone arrays together with techniques like

beamforming [14]. But microphone-array based systems are

often computationally expensive, which makes it important

to resort to less complex methods. In this context, binaural

audition has emerged as an interesting, low-complexity and

biologically-inspired sound processing domain. It is based

on the use of the signals captured by only two microphones

to reach human-like auditive capabilities. Indeed, binaural

processing has been used in multiple applications, like sound

source localization [12], [4], speech enhancement [2], and

voice activity detection [2]. We have also proposed in [15]

a binaural speaker recognition system, which offered better

performances than conventional monaural systems, but was

sensitive to the speaker position.

Binaural sound source localization systems have been con-

ceived in multiple aspects. Some of them proposed studies

that try to model the human head and to link the auditive cues

to its geometry and to the sound source direction, see [4]

or [5]. Thus, inverting these models could then allow to
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deduce the sound source position. But when such systems

are used in experimental conditions, the models fail and do

not comply with reality [8]. On the contrary, learning-based

approaches might be better adapted and more robust to such

problems [7], [9]. In this context, this paper presents a novel

sound source localization system. It provides a new way of

coupling vision and sound in a learning-based approach that

provides effective localization capabilities. The system uses a

neural network to learn and exploit the relationship between

the visualized positions of the sound source and the auditory

cues extracted from two ears. This approach is inspired

by the impressive human capabilities where vision plays a

fundamental role in auditory scene analysis. Indeed, some

recent works hypothesize some visually guided auditory

adaptation processes for seer people [6]. In our approach,

vision provides a tool to represent the sound source’s position

in the scene, and the localization, expressed in pixel positions

inside an image, relies on the information provided by the

auditive cues. The approach is less complex and has a better

spatial resolution than related works, see [11], [7] and [9].

For now, the work disregards the hypothesis of multiple

sound sources, including noises and reverberations. The

feasibility of the approach, applied on white noise signals

is tested and discussed in this paper, for a generalization to

more realistic environments in following works, including

speech and additive unwanted signals. Contrarily to many

studies that only address the azimuth estimation like [7], [11],

this work aims at estimating both azimuth and elevation at

the same time.

The paper is organized as follows: the azimuth and ele-

vation estimation methods are presented in the next section.

Simulation and experimental datasets and tests results are

presented and discussed in Section III. Finally, a conclusion

ends the paper.

II. AZIMUTH AND ELEVATION ESTIMATION

A. Azimuth estimation

In all the following, a neural newtork is used in order to

estimate the sound source position. Its inputs are code vectors

composed of interaural cues: Interaural Level Differences

(ILD), Interaural Phase Differences (IPD) and Interaural

Time Differences (ITD). These cues are precisely described

first. The neural network itself, together with the learning

algorithm is depicted later, and its outputs are last introduced.
1) Network inputs and auditory cues extraction: As it

can be seen in Figure 1, signals from both robot ears are

exploited to compute the interaural auditory cues. The human

cochlear filtering is artificially reproduced by a set of 20
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Fig. 1. Auditory cues extraction diagram.

gammatone filters defined in [10]. Their central frequencies

fc(i) range from 100Hz to about half of the sampling

frequency fs = 44100Hz. This process leads to 20 signals

per ear, the interaural cues are then extracted from these 20
signals through the following methodology.

a) Interaural Level Difference: The ILD is a frequency-

dependent cue that reflects the difference in powers of the

signals reaching the two ears. An ILD for each gammatone

filter’s frequency range can be extracted according to:

ILD(fc(i)) = 20 log10
El(fc(i))

Er(fc(i))
, (1)

where El(fc(i)) and Er(fc(i)) respectively represent the

left and right cochlear filter output powers correspond-

ing to the ith gammatone response centered at frequency

fc(i), i ∈ [1, 20].
b) Interaural Phase Difference: IPD refers to the differ-

ence in the phases of waves reaching the ears. It is obtained

with:

IPD(fc(i)) = 2πfc(i)τlr(fc(i)),with (2)

τlr(fc(i)) = k/fs and k = argmax
n

(R
(i)
lr [n]),

where R
(i)
lr [n] =

1
N

∑N−n−1
m=0 li[m + n]ri[m] is the biased

estimate of the cross-correlation function between the two

signals li[n] and ri[n] originating from the ith left and right

gammatone filters respectively.

c) Interaural Time Difference: ITD reflects the differ-

ence between the lengths of the paths traveled by the sound

wave before reaching the ears.

ITD =
1

2π
f+ IPD(f), (3)

where (.)+ denotes the Moore-Penrose pseudo-

inverse, f = (fc(1), fc(2), . . . , fc(Nfilter))
T

and IPD(f) = (IPD(fc(1)), . . . , IPD(fc(Nfilter)))
T .

Consequently, the ITD value is obtained by a least

square operation performed on the IPD.

2) Code vector composition: ILDs and IPDs are known

to be not salient for low and high frequencies respectively

(Duplex theory by Lord Rayleigh). An observation of their

patterns as a function of frequency led to taking them

into consideration for frequencies higher than 1.5kHz, and

lower than 3kHz respectively, as they don’t carry much

information outside these frequency intervals. So, the final

neural network’s input code vectors are composed of 13

ILDs, 12 IPDs and a single ITD value each, which makes a

total input dimension of 26.

3) Network constitution and learning algorithm: The

neural network used in this study is a feed-forward multi-

layer perceptron (MLP) with one hidden layer composed

of 15 cells. Since the input code vectors contain data of

different types (amplitudes, phases and times), a regular

complete connections neural network–i.e. a network where

each hidden cell is connected to all input cells–, is not

physically adapted to these inputs. But note that a more

classical full-connected newtork could also be used. A hidden

cell should not be connected to two inputs of two different

physical types. Therefore, one hidden cell is dedicated to

the ITD, 7 are dedicated to the ILDs and 6 to the IPDs. And

the connections between the hidden cells and the outputs

are kept unmodified. The training uses the full gradient

backpropagation algorithm. Cross-validation steps are per-

formed periodically, and the training is stopped when the

network’s performances stop improving. The amounts of

training, cross-validation and testing data are specified later.

4) Network outputs and sound source representation:
The proposed sound source is a loudspeaker carrying three

colored markers. A camera mounted on the robot’s head takes

movies of the moving sound source and an image processing

system analyses the captured images and evaluates the line

and column indices of each marker’s center. For the azimuth

estimation, and since column variations reflect variations in

the horizontal plane, the outputs of the network are only the

three markers’ column indices in the image.

B. Elevation estimation

Tests performed with interaural cues on elevation estima-

tion do not show satisfactory results. Indeed, interaural cues

contain powerful information about the azimuth, and very

weak information about the elevation [13]. More generally,

it is know that the elevation can be accessed from monaural

cues. Indeed, the human pinna shape is at the origin of

interferences with the waves directly entering the auditory

canal, causing constructive and/or destructive reflections at

specific frequencies depending of the sound source location.

This phenomenon produces spectral peaks and notches which

are supposed to be used by humans when evaluating the

elevation of a sound source [3]. In this field, one can cite [13],

where a method using spectral cues for the elevation esti-

mation is presented, with a robot having two logarithmic-

shaped reflectors as pinnas. But spectral peaks and notches

are known to be very hard to extract. As a solution, we

propose here to compute for each source position the energies

coming from the 2 cochlear filter-banks. These energies are

expected to capture the aforementioned reflections translated

by high and low energies in specific spectral areas, and

thus to better the elevation estimation performances of the

proposed approach. A regular neural network is now used to

estimate the three line coordinates of the three markers in the

image. The input of this network is not made of interaural

cues. It consists in the 40 energy values corresponding to

the 2 × 20 gammatone filters, and the outputs are the three

markers’ line coordinates.
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III. SIMULATIONS AND EXPERIMENTS

In order to evaluate the proposed approach, simulated

and experimental databases have been elaborated. In both

cases, the sound source emits a white discrete Gaussian noise

(useful here as its spectrum spreads over a wide frequency

band). The cues are extracted on the basis of 1024-points

time windows lasting 23ms with a sampling frequency of

fs = 44.1kHz.

In both cases, the learning of the neural networks is done

with 60% of the total amount of data, the cross-validation

uses 20% and the remaining 20% are used for the testing.

In the testing phase, the networks provide estimations of

the three markers’ line and column indices based on the

perceived auditory inputs. The mean estimation errors of the

system are defined as the mean Euclidean distances between

the estimated outputs and the real ones.

A. Simulations

This subsection presents an artificially generated database

and the resulting localization performances. A virtual robot

is placed in an environment where a sound source is moving.

For each source position, the left and right ear signals are

computed and a virtual camera placed on the robot’s head

provides the source position in an image.

1) Database generation: The simulated input database

is based on left and right ear signals generated from

the source noise signal, convolved with impulse responses

known as Head Related Impulse Responses (HRIRs) for

different spatial positions. The CIPIC database provides these

left and right impulse responses for various azimuths and

elevations [1]. To obtain the outputs, a camera model has

been simulated. It performs a 3D to 2D transformation and

projects the visual markers into an image plane. Thus, their

horizontal and vertical positions pixx and pixy in pixels

are obtained. In the testing phase, the networks provide

estimations of the line and column indices, p̂ixy and p̂ixx
respectively. Then, an inverse of the camera model gives the

corresponding estimated elevation and azimuth angles φ̂ and

θ̂. The estimation errors are defined as εφ = |φ − φ̂| and

εθ = |θ − θ̂| respectively.

2) Localization results: During the learning and testing

steps, the database is restricted to angles between −45◦

and 45◦ with a 1◦ step for both azimuth and elevation

for a total number of 8281 examples. This resolution has

been reached with a spline interpolation performed on the

azimuth and/or elevation impulse responses. The resulting

estimations are shown in Figure 2. As expected, they show a

high accuracy in the azimuth and elevation estimation, having

mean errors of only 1.22◦ and 2.06◦, and mean standard

deviations of 1.53◦ and 1.69◦ respectively. So the approach

is able to provide a correct estimation, but takes benefit from

the precise knowledge of the sound angular position so as

to compare it with the estimated one. This is rarely the case

in an experimental setup, thus justifying the idea to work

directly in an image.

(a)

(b)
Fig. 2. Simulation: estimation results, predicted angles as a function of
the real angles. (a) azimuth angle, (b) elevation angle.

B. Experiments

This subsection presents experimental results obtained

with real binaural signals recorded by using a dummy head

and images provided by a camera mounted on top of it.

1) Database: The experimental database has been

recorded in an acoustically prepared room equipped with

3D-pyramidal-pattern sound-absorbing studio foams placed

on the roof and on the walls. A KU100 dummy head from

Neumann is employed. It has two microphone capsules built

inside two human-like ears, thus reproducing the effects

of the human head and outer ears on a sound signal,

before reaching the inner ear. The two microphone outputs

are synchronously acquired by a National Instruments PCI

acquisition board through 24 bits delta-sigma converters

operating at a sampling frequency fs = 44.1kHz. A camera

from Baumer is placed on top of the head, and provides 44

photos per second with a 640*480 resolution. This frame

rate is selected to easily synchronize each image with an

approximately 23ms sound frame. A small portable round

loudspeaker with a frequency response ranging from 200Hz

to 16kHz is used to emit a white Gaussian noise. 3 colored

patches are sticked in front of it, and an image processing

algorithm gives the coordinates of the centers of the patches.

During a recording, a person holds the loudspeaker emitting

the noise in the camera field of view, and moves it in different

directions (left, right, up, or down).

2) Localization results: As already pointed out, the exact

relative angular location of each marker with respect to the

head does not need to be known when working directly in the

image. So, the experiments will be assessed by comparing

the actual pixel coordinates pixy and pixx to the predictions

p̂ixy and p̂ixx produced by the neural networks thanks

to the auditive cues. Having three points, the mean real

and estimated coordinates are compared, so as to compare

the real and estimated loudspeaker centers. Note that the

results presented in this section are obtained on a 12s-
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(a)

(b)
Fig. 3. Experiments: estimation results, predicted dimensions as a function
of time. (a) columns, (b) lines.

Fig. 4. Experiments: a truncated view of an image taken by the camera.
It shows a predicted trajectory made by the sound source (blue) and the
corresponding real trajectory (red).

recording during which the sound source moves in the image.

Estimations are reported in Figure 3. They show that the

predicted pixel coordinates follow the real ones quite well,

while the column estimation results are better than the line

estimation results, which is inline with the simulation results

showing a better performance in the azimuth case. Figure 4

shows a comparison between a predicted trajectory and a real

one. It can be seen that the system localizes the target source

quite accurately. The observed differences between the two

trajectories are mainly caused by the line coordinates having

bigger estimation errors than the columns.

C. Discussion

The tests made on the simulated and the experimental

databases lead to the same conclusions: the system is able

to efficiently estimate the position of the sound source, with

better performances in the azimuth estimation than in the

elevation estimation. Compared to related works, this system

has a higher resolution and is less complex. For example, one

can cite [11] where a parametric model computing ILDs and

IPDs as a function of the azimuth is used, and these cues are

inverted to deduce the azimuth. But the estimation errors are

higher than those obtained in our study, and the resolution

is weaker (5 degrees in azimuth). Also in [7] and [9], the

binaural systems rely on probabilistic approaches needing

large databases and computational capabilities and times, and

have position resolutions of 5◦.

IV. CONCLUSION

A sound source localization system has been presented.

It deals with the localization problem in a new learning

fashion using cues extracted from both human-like ears of a

humanoid robot and visual information from a camera placed

on its head. While the interaural cues provided very satis-

factory results for azimuth estimation, output energies from

a set of cochlear filters allowed to efficiently determine the

source’s elevation. Nevetheless, the described work provides

an efficient tool in adequate acoustic conditions. Ongoing

works are now aiming at generalizing the tests to more

complex situations, with noises and reverberations, together

with human voice sound signals.
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