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ABSTRACT

Under real conditions, severe signal cancellation often oc-
curs in adaptive beamformers because of reverberation, mi-
crophone transfer function mismatch or steering vector er-
ror. Therefore, usually voice activity information is necessary
to pause the beamformer update during the speech activity.
However, this information is not available or not sufficiently
accurate in most applications. Here we propose a new algo-
rithm in order to mitigate the signal cancellation effect. The
algorithm extracts the desired source-to-microphones transfer
functions from the data covariance matrix by using rough es-
timates of some source locations. We show that it is robust
against reverberation, microphone mismatch and imprecisely
estimated target direction.

Index Terms— Microphone array, signal cancellation effect,
weighted Procrustes problem, dereverberation

1. INTRODUCTION

Interference that is coherent with the signal of interest of-
ten occurs in adaptive microphone arrays because of rever-
berations, microphone mismatches or error in steering vec-
tor. The commonly utilized minimum variance distortionless
response (MVDR) beamformer minimizes the output power
while maintaining a specified response to the desired signal.
However, in the presence of coherent interferers or steering
vector error, MVDR is not successful because coherent inter-
ferences are used to cancel the desired signal from the output.
Many signal processing methods have been proposed to ad-
dress this problem. These techniques are usually called robust
adaptive beamforming. However, this robustness is achieved
at the expense of less interference reduction or an increased
number of microphones. For example in [5], the signal is aver-
aged over the space to decorrelate the signal and interference.
This technique can only be applied to uniform microphone ar-
rays and needs many elements to achieve satisfactory perfor-
mance. Using norm-constrained adaptive filters was proposed
to constrain the power of the signal leakage and therefore im-
proving adaptive beamformers robustness. This approach has
been employed in [4] to address the target signal cancellation
effect. However, it requires knowledge of the interference co-

variance matrix which may not be available in speech recogni-
tion applications. In [3], both quadratic and non-linear (trun-
cation) constraints in three-block structure have been used to
improve the interference reduction. Another approach is to
estimate the transfer functions (TFs) with blind source sepa-
ration techniques. TFs may also be estimated based on non-
stationarity of signal and stationarity of noise assumption [2].
In this paper, we extract the TFs from the covariance matrix
of the array data given the source locations. The mathematical
formulation of this approach leads to a weighted Procrustes
problem [6]. Typically, a Procrustes problem is about rotating
and scaling a known set of data to fit another set. Here this
method is used to estimate those TFs that are close enough to
the ideal TFs (steering vectors) and still can reconstruct the
data covariance matrix.

2. SIGNAL CANCELLATION

Let sm(n) be the sound waves emitted by M wide-band
sources. They are received by an array of N microphones.
The room impulse response hk,i

room(t) characterizes both di-
rect and echo paths from the kth source to the ith microphone.
Since the microphones may not be calibrated, they may intro-
duce different transfer functions hi

mic(t). One can merge the
room impulse response and microphone transfer function into
a total transfer function hk,i(t) containing both room acoustic
and microphone characteristics. Therefore the ith microphone
output in the frequency domain can be written as:

xi(f) =

M∑

m=1

hk,i(f)sm(f) + ni(f), (1)

where ni(f) is the additive white noise at the ith microphone.
The microphone outputs can be aggregated into a column vec-
tor x:

x = Hs+ n, (2)

where n is the additive white noise vector, H = [h1, ...,hM ]
the channel matrix, hi = [hk,i, ..., hM,i]T the ith column of
H and s = [s1(f), ..., sM (f)] the source vector. The number
of sources M is assumed to be less than the number of micro-
phones N . Without loss of generality, s1 can be considered
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as the desired signal. The goal of the beamformer is to obtain
an estimate of the desired signal by filtering and summing the
microphone outputs:

y(f) = w(f)Hx(f), (3)

where (.)H is the Hermitian transpose operator, y the beam-
former output and w the beamformer weight vector. The con-
ventional MVDR beamformer chooses its weight vector w to
minimize the output power while maintaining the signal from
a specified direction of arrival:

argmin
w

w
H
Rw subject to w

H
d = 1 (4)

R = E{xxH} is the covariance matrix of the received
data x. The target steering vector is defined by d =
[e−jωτ1 , ..., e−jωτN ], where τ1, ..., τN are delays matched to
the desired direction. However, the conventional MVDR in
(4) works well in very limited situations. In reality, severe sig-
nal cancellation occurs because of microphone mismatches,
location estimate errors, signal-correlated noise and reverber-
ant environments. To clarify this problem, we have to look
more closely at the covariance matrix R:

R = E{xxH} = HRsH
H + σ2

I, (5)

where Rs = E{ssH} is the source covariance matrix and σ2

the additive white noise power. As long as the sound sources
are uncorrelated, Rs is diagonal and (5) can be decomposed
into three additive terms:

R = h1h
H
1 S1(f) +H2:MRs2:MH

H
2:M + σ2

I, (6)

where S1(f) is the power spectrum of the desired signal and
H2:M = [h2, ...,hM ]. Rs2:M can be obtained by removing
the first row and the first column of Rs. Substituting w

H
h1=

1 in the MVDR objective function (4) yields:

w
H
Rw = S1(f)+w

H
H2:MRs2:MH

H
2:Mw+σ2

w
H
w (7)

Ignoring the first term, the MVDR optimization problem can
be simplified to:

argmin
w

w
H
H2:MRs2:MH

H
2:Mw + σ2

w
H
w

subject to w
H
h1 = 1 (8)

Note that (8) is independent of S1. However, usually in rever-
berant rooms, no knowledge about h1 is available in advance.
It has to be estimated from the array data or approximated
with steering vector d calculated from the desired source lo-
cation estimate. Since h1 includes both direct and indirect
paths, it can be decomposed into a sum of steering vector and
echos transfer function:

h1 = d+ hechos (9)

Note that the attenuation factor has been intentionally
dropped to avoid notational distraction. R can be rewritten
as follows:

R = (hechos + d)(hechos + d)HS1(f)+H2:MRs2:MH
H
2:M

+σ2
I (10)

By using w
H
d = 1 as an approximation of the target transfer

function h1, the objective function becomes:

|wH
hechos+1|2S1(f)+w

H
H2:MRs2:MH

H
2:Mw+σ2

w
H
w

(11)
Looking closely at this function reveals that the first term can
be vanished if wH

hechos = −1 holds. Therefore the MVDR
optimization problem tends to satisfy the w

H
hechos = −1

constraint. However, satisfying this constraint results in re-
moving the signal from the beamformer output. To clarify it,
note that the signal component in the beamformer output can
be written as ys = w

H
h1s1(f). Using (9) and the fact that the

weight vector satisfies wH
d = 1 and w

H
hechos = −1 con-

straints, the beamformer response to the signal transfer func-
tion h1 is wH

h1 = 0 and thus ys = 0. That is, by approx-
imating the real TF with the steering vector d, the MVDR
beamformer tends to remove the desired signal. Actually, if
we ignore the white noise term for sake of simplicity, by
choosingw from H null space, the objective function reaches
its minimum value, namely zero. It means w

H
H = 0 and

therefore w
H
h1 = 0. One natural solution is to update the

sample covariance matrix at speech pauses. Then there will be
no S1(f) in (10) to result in signal cancellation. However, this
solution needs accurate voice activity information and also
cannot track the non-stationary background noise. The second
approach which will be described in the following section, is
to estimate the acoustic transfer function and the microphone
mismatches. This estimate is then used to achieve the signal-
independent optimization problem in (8).

3. TRANSFER FUNCTION ESTIMATION

In the presence of several interferers, we have to estimate h1

from the corrupted data x = Hs + n. This information can
be extracted from the covariance matrix R. Using spectral
decomposition, R can be written as R = U(Λ + σ2

I)UH ,
where the first M columns of U are the orthonormal basis
vectors of the signal and interferences subspace and σ2 is the
white noise power which can be estimated as the average of
the N−M smallest eigenvalues of R. Given the source posi-
tion, the ideal steering vector can be easily calculated. How-
ever, because of acoustic characteristics of a room, the steer-
ing vector dmay not lie in the subspace spanned by theU1:M

columns. One approach to estimate h1 is to find in subspace
U1:M , the closest vector to d in the Euclidean sense, i.e.,

argmin
x

||U1:Mx− d||F2 (12)
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Consequently, h1 = U1:Mx and it belongs to the subspace
U1:M . This is a projection problem and the solution can be
written as h1 = U1:MU

H
1:Md, where P = U1:MU

H
1:M is

the projection operator onto the U1:M subspace. However,
although it can be a good guess if the steering vector and the
real TF mismatch is fairly small, it may not work in more
severe reverberant environments. To go one step further, we
assume here the availability of some additional information
about the interferer locations. That is, direction of arrival of k
interferers (k ≤ M ) can be derived from the array data (which
is reasonably simple for at least an imprecise estimate)1. Un-
like some other methods, they do not necessarily need to be
the k strongest sources. Defining H

′ = U1:MΛ
1/2
M×MV and

thus R = H
′
H

′H one can infer that H′ can be estimated up
to an unknown multiplicative unitary matrix V from R de-
composition. Our aim is to estimate this unitary matrixV and
reconstruct h1 by ĥ1 = U1:MΛ

1/2
M×Mv1. Taking locations

information into account, (12) can be extended as follows:

argmin
V,Γ

||U1:MΛ
1/2

V1:kΓ−D||F2 s.t V
H
1:kV1:k = I

(13)
where Γ is a k×k diagonal weighting matrix which is
necessary to model the unknown attenuation factor. D =
[d1, ...,dk] is the steering matrix. It is worth to note that in
case of k = 1, (13) will reduce to the simple least squares
problem in (12). However, unlike (12), there is no straightfor-
ward solution for (13). The optimization problem in (13) is
a linear least squares problem defined on a Stiefel manifold,
known as weighted orthogonal Procrustes problem (WOPP).
A Stiefel manifold is the set of all M×N matrices V having
orthonormal columns. Usually, solutions suggested for this
problem have two steps: Given Γ, they try to find the opti-
mum V and use it in the second step to find the optimal Γ.
This forms an iterative solution that converges to a local min-
imum. Here, we employ the algorithm suggested in [1] with
small modifications to work with complex matrices. The com-
plete iterative channel matrix estimation algorithm is listed in
Table 1. Simulations have shown that it converges in less than
20 iterations. This algorithm may be computationally expen-
sive. However, it only needs to be run infrequently since the
TF does not change rapidly. The output of this algorithm is
an estimate of the channel matrix H which is used in (8) to
achieve a signal-independent MVDR beamformer.

4. SIMULATION RESULTS

The adaptive beamformer is implemented in the frequency
domain with overlap-add 2048 point FFT filterbank and sam-
pling frequency of fs = 44100Hz. The non-uniform linear
array consists of 8 microphones as depicted in Figure 1. For

1Since many systems nowadays use both audio and video channels to ease
the human-machine interaction, like Microsoft’s Kinect-Xbox, the location
information could also come from the vision channel.

A = [a1, ..., ak] = Λ
1/2

U
H
1:MD

V0 = I

for each t = 0, . . .

Z = [z1, ..., zk] = Vt

αi =
a
H
i zi

zHi Λzi
i = 1, .., k

C = [c1, ...ck], ci = αiai+|αi|
2(ρI−Λ)zi i = 1, ..., k

C = UcΛcV
H
c

Vt+1 = UcV
H
c Vt+1 = [v1, ...,vk]

Φ(t+1) = 2

k∑

i=1

real(αiv
H
i ai)−

k∑

i=1

|αi|
2
v
H
i Λvi

terminate if Φ(t+1)− Φ(t) ≈ 0

Table 1: Iterative channel matrix estimate algorithm

evaluation of the proposed algorithm, two different simulation
cases have been chosen.

Case I: In the first scenario, two speech signals in a reverber-
ant room with T60 = 100ms (T60 is the reverb time) have
been assumed. The origin of the coordinate system is at the
center of the microphone array. The desired speaker and the
interferer are placed at [0, 2.5, 0] and [3, 2.5, 0] in meter, re-
spectively. A mismatch of less than 2 dB is assumed between
the microphone transfer functions. Beam pattern can be de-
fined as BP(h(f)) = |wH

h(f)|2 and beam pattern values at
h = h1 (desired signal transfer function) and h = h2 (in-
terferer) can be interpreted as the beamformer responses to
the signal and interference, respectively. These responses are
shown in Figure 2 for the proposed, the conventional MVDR
and the super-directive beamformers. Super-directive beam-
formers assume diffuse noise which is a very common model
for reverberant environments. Note that BP(h1) can be inter-
preted as SNRout

SNRin
and BP(h2) = INRout

INRin
. Therefore, beam

pattern can be seen as a performance evaluation measure. The

average of BP(h2(f))

BP(h1(f))
over all frequencies is called relative

mean attenuation and is shown with a horizontal dotted line
for all beamformers in Figure 2. It reveals that the fixed super-
directive beamformer can attenuate the interference up to 15
dB in average while the MVDR with updated constraint with
our algorithm, can achieve 7 dB more interference reduction.
Also, the beamformer response to h1 shows less fluctuations

4 5 6 7 8321

3d 3d9d 9d1d 1d 1d

27d

Fig. 1: Linear microphone array with eight non-uniformly spaced
microphones at d = 3 cm.
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Fig. 2: Proposed MVDR (top), conventional MVDR (middle) and
super-directive beamformer responses to the signal and the inter-
ferer.

and thus less signal distortion for the updated MVDR than
the super-directive beamformer. However, as expected, the
conventional MVDR response to the target TF shows that it
severely distorts the desired signal.
Case II: In the second scenario, the traditional and the pro-
posed MVDR beamformers’ performances in the presence of
large target steering vector error have been studied. Figure
3 shows the beam pattern of the MVDR beamformer with
updated constraint and the traditional MVDR beamformer at
1 kHz. A steering vector error of 15◦ has been assumed for the
signal and the interferer. Therefore both columns of the steer-
ing matrix in (13) are imprecise. Nevertheless, as it can be
seen in Figure 3, the updated MVDR achieves both robustness
against 15◦ steering vector error and high interference reduc-
tion which is around 30 dB at interference direction. The solid
line also reveals a slight shift in the null position (from 40◦ to
33◦ which leads to about 10 dB degradation in interference re-
duction (from 40 dB to 30 dB). More experiments have shown
that the proposed algorithm is robust against even larger tar-
get direction errors at the expense of this shift in null position
which can be seen as a trade-off between the noise reduction
and robustness. The proposed algorithm prevents signal atten-
uation by shifting the main lobe to the correct azimuth while
the traditional MVDR performs dramatically worse. The main
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Fig. 3: Beam pattern of the updated constraint MVDR and the tradi-
tional MVDR at f=1000Hz. Vertical lines mark the source and the
interferer positions.

advantage of this method over other similar methods of robust
constraint set design like [7] is that it doesn’t widen the main
lobe but shifts it to the correct angle by extracting covariance
matrix information.

5. CONCLUSION

We proposed a new solution to overcome the signal cancel-
lation effect caused by reverberation or target direction er-
ror. The proposed algorithmuses additional information about
source locations to achieve a precise estimate of the transfer
functions relating the source of interest to the microphones.
The proposed algorithm shows a high robustness in the pres-
ence of reverberation or target direction error, where the per-
formance of the conventional MVDR beamformer is unac-
ceptable. However, the proposed algorithm may degrade in
heavy reverberation environments. A possible solution for the
heavy reverberation case is to replace the steering vectors with
more informative vectors that reflect some of the room acous-
tic characteristics.
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