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ABSTRACT

Modern high performance speech processing applications incorpo-
rate large microphone arrays. Complicated scenarios comprising
multiple sources, motivate the use of the linearly constrained min-
imum variance (LCMV) beamformer (BF) and specifically its ef-
ficient generalized sidelobe canceler (GSC) implementation. The
complexity of applying the GSC is dominated by the blocking ma-
trix (BM). A common approach for constructing the BM is to use
a projection matrix to the null-subspace of the constraints. The lat-
ter BM is denoted as the eigen-space BM, and requires M2 com-
plex multiplications, where M is the number of microphones. In the
current contribution, a novel systematic scheme for constructing a
multiple constraints sparse BM is presented. The sparsity of the pro-
posed BM substantially reduces the complexity to K × (M − K)
complex multiplications, where K is the number of constraints. A
theoretical analysis of the signal leakage and of the blocking ability
of the proposed sparse BM and of the eigen-space BM is derived.
It is proven analytically, and tested for narrowband signals and for
speech signals, that the blocking abilities of the sparse and of the
eigen-space BMs are equivalent.

Index Terms— Beamforming, Generalized sidelobe canceler

1. INTRODUCTION

A wide range of applications, such as home entertainment, audio
conferences and hearing aids, utilize spatial filtering with micro-
phone arrays for obtaining high performance signal enhancement.
Over the past years, technology advances in processing power, com-
munication bandwidth and power consumption, have extended the
use cases to more complicated scenarios, involving multiple speak-
ers and interferences. By increasing the number of microphones,
more control on the desired spatial response is available. The LCMV
BF is a beampattern design criterion for minimizing the noise power
at the output of the BF under a set of linear constraints. The closed-
form LCMV-BF has an equivalent GSC implementation. The GSC
form separates the objectives of constraining the beampattern (per-
formed by the fixed beamformer (FBF)) and of minimizing the noise
level (performed by the BM followed by the noise canceler (NC)).
Here are two examples where LCMV-BFs are used in a challenging
multiple sources scenarios. Markovich-Golan et al. [1] have utilized
the LCMV criterion implemented as GSC in the short time Fourier
transform (STFT) domain for enhancing a group of desired speakers,
and mitigating a group of competing speakers in a reverberant envi-
ronment. Bertrand and Moonen [2] proposed a distributed LCMV
algorithm for a network of microphone arrays sharing a wireless
communication channel. Node dependent desired responses to a

global Kth order constraints set are determined. Iteratively, each
node broadcasts K channels to all other nodes, and updates its local
BF. Each local BF utilizes the local microphones and the broad-
casted channels from other nodes.

Consider the complexity of applying the GSC. Assuming that
M microphones are used, and K constraints are defined, the com-
plexity per frame and frequency bin of the GSC in the STFT domain
is attributed to: 1) M complex multiplications at the FBF; 2) the
complexity of applying the BM; 3) M −K complex multiplications
at the NC. There is no unique design for the BM. For the single con-
straint scenario, Gannot et al. [3] propose a sparse M×(M−1) BM
which requires only M − 1 complex multiplications. Herbordt and
Kellerman [4] provided an efficient adaptive BM utilizing also only
M − 1 complex multiplications. A commonly used M × (M −K)
BM is comprised of the basis vectors spanning the null-subspace of
the constraints columns-space. The basis vectors can be obtained by
applying the singular value decomposition (SVD) to the constraints
matrix. Applying the SVD based BM involves M × (M −K) com-
plex multiplications. Markovich-Golan et al. [1] use an M × M
projection matrix to the null-subspace of the constraints matrix as
the BM. The latter scheme requires M2 complex multiplications.
Reuven et al. [5] and Krueger et al. [6] propose a 2-stage projection
procedure for designing a BM for the case of a single desired speaker
and a single interfering speaker. The resulting BM is an M×M ma-
trix, and its application also requires M2 complex multiplications.
Clearly, the complexity of the GSC is mainly dominated by the BM
(in the general K constraints case). Tseng and Griffiths [7] propose
to construct the BM by recursively projecting the received signals to
the null-space of the constraints, one by one. The resulting procedure
requires MK complex multiplications (provided that K < M

2
).

In the current contribution a novel systematic procedure for de-
signing a K constraints sparse M × (M − K) BM is proposed.
The BM requires only (M − K)K complex multiplications. The
blocking ability of the sparse BM, defined as the robustness to the
acoustic transfer functions (ATFs), is analyzed and compared with
the blocking ability of the commonly used eigen-space BM. For low
estimation errors, it is proven that blocking ability of the sparse BM
and of the eigen-space BM are equivalent.

The paper is organized as follows. In Sec. 2 the problem is for-
mulated. In Sec. 3 the eigen-space BM and the sparse BM are for-
mally derived. Then, in Sec. 4 the blocking ability and the signal
leakage of the BMs are analyzed. A comprehensive experimental
study of narrowband signals as well as of speech signals is described
in Sec. 5.
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2. PROBLEM FORMULATION

Consider a microphone array comprising M microphones. The re-
ceived signals in the STFT domain are:

z(�, ζ) = H(ζ)s(�, ζ) + v(�, ζ) (1)

where � is the frame index and ζ is the frequency bin index. The
received signals comprise two contributions. The first contribution
H(ζ)s(�, ζ) is related to the constrained sources, where s(�, ζ) =[
s1(�, ζ) · · · sK(�, ζ)

]T
is a K × 1 vector of coherent sig-

nals, H(ζ) =
[
h1(ζ) · · · hK(ζ)

]
is an M × K constraints

matrix comprised of the K ATFs relating the constrained sources and
the microphones. The second contribution v(�, ζ) is related to the
non-constrained contribution. Without loss of generality we assume
that the ATFs are normalized, i.e. ‖hk(ζ)‖2; k = 1, ..,K. Hence-
forth, the frequency bin index ζ is omitted for brevity. The derived
formulas correspond to either a single frequency, or one frequency
bin for wideband signals.

3. DESIGNING THE BM

In Sec. 3.1 the eigen-space based BM is defined, as in [1]. In Sec. 3.2
the proposed sparse BM is derived.

3.1. Eigen-space based BM

The eigen-space BM is given by the projection matrix to the null-
subspace of the constraint matrix H:

Be = IM×M −H
(
H†H

)−1

H†
(2)

where IM×M is the M ×M identity matrix. It can be verified that
B†

eH = 0. Application of the eigen-space BM involves M2 com-
plex multiplications per frame and frequency bin.

3.2. Sparse BM

The contribution of the constrained signals to the received signals
in (1), i.e. Hs(�), lies in a rank-K subspace in the M dimensional
space. By a proper transformation, Hs(�) can be expressed as a
linear combination of the constrained signal contributions of K ref-
erence received signals. Without loss of generality we consider the
first K microphones as the reference signals. Denote the reference

microphones by zr(�) =
[
z1(�) · · · zK(�)

]T
. The reference

microphones are given by:

zr(�) = Hrs(�) + vr(�) (3)

where Hr = H1:K,1:K , and vr(�) =
[
v1(�) · · · vK(�)

]T
.

Assuming that Hr is invertible, Hs(�) can be expressed in terms

of Hrs(�) as Hs(�) =
[
IK×K βK+1 · · · βM

]†
Hrs(�)

where βm =
(
H−1

r

)†
H†

m,: for m = K + 1, ..,M and Hm,:

is the mth row of H. Utilizing the latter representation, a noise
reference (non-constrained part) based on the mth microphone (for
m = K +1, ..,M ), is extracted by subtracting a linear combination
of the reference microphones zr(�) from zm(�). I.e.

um(�) = zm(�)− β†
mzr(�) = vm(�)− β†

mvr(�). (4)

The corresponding BM is denoted as Bs and is given by:

Bs =

[ −βK+1 · · · −βM

I(M−K)×(M−K)

]
. (5)

Please note that Bs has (M − K) × K non-zero entries in its
first K rows and M − K entries equal to 1 in the lower M − K
rows. Hence, the proposed BM can be denoted as the sparse BM.
Its application requires (M −K)×K complex multiplications per
frame per frequency, which is much lower than the M × (M −K)
complex multiplications required by the eigen-space BM (assuming
that K � M ).

In the special case of K = 1 the proposed sparse BM equals to
the BM proposed by Gannot et al. [3], which is based on the relative
transfer function (RTF) with respect to a single (arbitrarily chosen)
microphone.

4. PERFORMANCE ANALYSIS

In the current section, the blocking ability and the signal leakage cri-
teria are defined and analyzed for the eigen-space and for the sparse
BMs.

Consider a noisy estimate of H:

H̃ = H+Δ (6)

where Δ =
[
δ1 · · · δK

]
comprises the M × 1 dimensional

vectors δ1, .., δK of independent identically distributed (IID) com-
plex Normal random variables with a zero mean, and a variance of
λu. Since hk; k = 1, ..,K are assumed to be normalized, the es-
timation accuracy defined as ‖H‖2F/E

{‖Δ‖2F
}

equals (Mλu)
−1,

where ‖ · ‖2F is the squared Frobenius norm.

The ability of the noisy BM B̃b to block hk, the ATF of the kth
source, is denoted by ηk

b , and equals the ratio between the leakage
of kth ATF to the output of the BM, λs,k

b , and the power of a unit
variance spatially white noise filtered by the BM, λn

b :

ηk
b =

λs,k
b

λn
b

(7)

where

λs,k
b =E

{
‖B̃†

bhk‖2
}

(8a)

λn
b =E

{
‖B̃†

bw‖2
}

(8b)

b ∈ {e, s} stands for sparse BM (s), or eigen-space BM (e), and w
is an M × 1 vector of zero mean, and unit variance complex Normal
IID random variables (RVs). Substituting hk = h̃k − δk in (8a) and

noticing that B̃
†
h̃k = 0 by construction yields:

λs,k
b =E

{
‖B̃†

bδk‖2
}
. (9)

The total blocking ability is defined as the sum of the blocking
abilities of all constrained ATFs:

ηb =
K∑

k=1

ηk
b . (10)

4.1. Blocking ability and signal leakage of the eigen-space BM

The noisy eigen-space BM is given by substituting the noisy
ATFs (6) in (2):

B̃e = IM×M − H̃
(
H̃

†
H̃
)−1

H̃
†
. (11)
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The noise power at the output of the eigen-space BM, λn
e , is given

by substituting (11) in (8b):

λn
e = E

{
w†B̃eB̃

†
ew
}
= trace

{
E
{
B̃eB̃

†
e

}}
. (12)

As B̃e is a hermitian projection matrix, the following equation holds:

B̃eB̃
†
e = B̃eB̃e = B̃e. And after some matrix manipulation λn

e

equals:

λn
e = M −K. (13)

The signal leakage of the kth ATF at the output of the eigen-
space BM, λs,k

e , is given by substituting B̃e in (9):

λs,k
e = E

{
δ†
kB̃eB̃

†
eδk

}
(14)

Expanding (14) to a Taylor series around H as a function of Δ, and
neglecting elements of order Δn for n > 2, and using E {Δ} = 0,
the following approximation holds:

λs,k
e ≈E

{
δ†
kBeB

†
eδk

}
= λu trace

{
BeB

†
e

}
. (15)

And similarly to the derivation of (13), λs
e equals:

λs,k
e = (M −K)λu. (16)

Therefore, the ability of the noisy eigen-space BM B̃e to block
hk, the ATF of the kth source is given by:

ηk
e =

λs,k
e

λn
e

= λu. (17)

And the total blocking ability of the eigen-space BM is:

ηe = Kλu. (18)

4.2. Blocking ability and signal leakage of the sparse BM

The noisy sparse BM is constructed by substituting H̃ (6), the noisy
estimate of H, in (5):

B̃s =

[
−β̃K+1 · · · −β̃M

I(M−K)×(M−K)

]
(19)

where

β̃m =
(
H̃

−1
r

)†
H̃

†
m,: (20a)

H̃r =Hr +Δr. (20b)

and Δr = Δ1:K,1:K .
Similarly to the derivation in (12), the noise power at the output

of the sparse BM is given by:

λn
s = trace

{
E
{
B̃sB̃

†
s

}}
. (21)

Following the definition in (19), the latter expression is:

λn
s =M −K +

M−K∑
m=1

E
{
‖β̃m‖2

}
. (22)

Consider a single term of the sum in (22):

E
{
‖β̃m‖2

}
= E

{
H̃m,:H̃

−1
r

(
H̃

†
rH̃r

)−1

H̃
†
m,:

}
. (23)

Assuming again that Hr is invertible and high estimation accuracy,

i.e. ‖Hr‖2 � ‖Δr‖2, and by replacing the expression
(
H̃

†
rH̃r

)−1

with its first term Taylor series expansion around 0, we obtain:

(
H̃

†
rH̃r

)−1

≈
(
I−

(
H†

rHr

)−1 (
H†

rΔr +Δ†
rHr +Δ†

rΔr

))

·
(
H†

rHr

)−1

. (24)

Next, substituting the approximation (24) in (23) and neglecting
terms Δn of order n > 2 and using E {Δ} = 0, the following
approximation holds:

E
{
‖β̃m‖2

}
≈‖βm‖2 + λu trace

{(
H†

rHr

)−1
}

− λuHm,:

(
H†

rHr

)−2

H†
m,:. (25)

Finally, substituting (25) in (22) yields:

λn
s =M −K + λu trace

{(
H†

rHr

)−1
}
(M −K)

+

M−K∑
m=1

‖βm‖2 − λuHm+K,:

(
H†

rHr

)−2

H†
m+K,:

≈M −K +

M−K∑
m=1

‖βm‖2 (26)

where the approximation in the last transition is due to the high esti-
mation accuracy.

Similarly to the derivation of (14), the leakage of the kth ATF to
the output of the sparse BM is given by:

λs,k
s =λu trace

{
BsB

†
s

}

=

(
M −K +

M−K∑
m=1

‖βm‖2
)
λu. (27)

The ability of the noisy sparse BM B̃s to block hk, the ATF of the
kth source is given by:

ηk
s =

λs,k
s

λn
s

= λu (28)

and the total blocking ability of the sparse BM is therefore:

ηs =Kλu. (29)

Please note that the blocking ability of the proposed sparse BM is
equivalent to the blocking ability of the eigen-space BM (17,18).

5. EXPERIMENTAL STUDY

The performance of the proposed sparse BM, and of the eigen-space
BM is presented for narrowband signal scenarios in Sec. 5.1, and for
wideband speech signals in Sec. 5.2.
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Fig. 1. Difference in dB between theoretical and empirical blocking
abilities for narrowband signals simulation with M = 20 micro-
phones, for the eigen-space BM (left) and sparse BM (right)

5.1. Narrowband signals

A comprehensive Monte-Carlo simulation was performed for val-
idating the theoretical analysis derived in Sec. 4. A total of 561
scenarios were tested, the parameters of the scenario were: 1) the
number of microphones was set to M = 5, 10, .., 30; 2) the num-
ber of constraints was set to K = 1, 2, .., �M

2
�; 3) the estimation

accuracy level was set to 0dB, 5dB, .., 50dB. At each scenario the
performance was averaged over 100 randomly generated ATFs (H),
times 1000 random estimation errors per instance. Altogether, the
blocking abilities of 56.1 × 106 sparse and eigen-space BMs were
evaluated and compared with the theoretical analysis. In Fig. 1 the
average differences between the theoretical blocking ability and of
the empirical blocking ability for the sparse and eigen-space BMs
are depicted. In these figures the number of microphones was set to
M = 20, while the numbers of constraints varied in the range of
K = 1, 2, .., �M

2
� and the signal to noise ratio (SNR) levels varied

in the range of 0dB, 5dB, .., 50dB. The results validate the theoreti-
cal analysis as the average deviation from the theory for estimation
accuracies higher than 5dB is lower than 0.5dB.

5.2. Speech signals

The eigen-space and sparse BMs were tested on wideband speech
signals in a simulated 4m × 3m × 3m room environment with a re-
verberation time of T60 = 150ms. A uniform linear microphone
array comprising 9 microphones with 5cm spacing was placed next
to one of the walls. Three speakers and a stationary interference were
located in the room, at a distance of 1.8m in front of the microphone
array, at angles −60o,−20o, 20o, 60o. The received signals were
sampled at a sample rate of 8KHz and transformed to the STFT do-
main with 4096 discrete Fourier transform (DFT) points and a 50%
overlap between frames. The three speakers were constrained. The
BMs were calculated in the STFT domain based on the normalized
ATFs of the three speakers contaminated by a −30dB error level.
High estimation accuracy can be obtained by applying the subspaces
based estimation in [1]. In order to keep the power at the output
of the sparse BM at a constant level over frequency, a normalized
BM B̃s/‖B̃s‖F was used rather than B̃s. Note that the latter scaling
does not affect the blocking ability as the signal leakage and the spa-
tially white noise gain are multiplied by the same factor. The total
blocking ability of the eigen-space BM was −28dB while the total
blocking ability of sparse BM was slightly worse at −26.5dB. The
1st source as received by the microphone array and its contribution
to the leakage at the outputs of the BMs are depicted in Fig. 2. Note
the different scale in the microphone and leakage figures. It can be
verified that the proposed sparse BM, and the eigen-space BM obtain
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Fig. 2. Source number 1 as received by the 1st microphone (top),
its contribution to the leakage at the output of the eigen-space BM
(middle) and at the output of the sparse BM (bottom)

similar performance for wideband speech signals.

6. CONCLUSIONS

A novel systematic scheme for constructing a K constraints sparse
BM for the LCMV-BF was derived. The signal leakage and the
blocking ability of the proposed sparse BM and of the commonly
used eigen-space BM are analyzed and compared. It is analyti-
cally proven that the blocking abilities of both BMs are equivalent,
provided that the estimation accuracy is high. The computational
complexity of the proposed sparse BM is K × (M − K), which is
substantially lower than the computational complexity of the eigen-
space BM, which is M2. The theoretical analysis is experimentally
verified for both narrowband signals and wideband speech signals.
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