
SOUND SOURCE LOCALIZATION IN SPATIALLY COLORED NOISE USING A
HIERARCHICAL BAYESIAN MODEL

Futoshi Asano1,2, Hideki Asoh1 and Kazuhiro Nakadai2

National Institute of Advanced Industrial Science and Technology (AIST)1,
Honda Research Institute Japan Co., Ltd (HRI-JP)2

ABSTRACT

In this paper, source localization in spatially colored noise is

addressed. The covariance of colored noise is estimated using

a hierarchical model in the joint Bayesian estimation. The

results of the experiment show that the spatial resolution was

improved compared with the approach without hierarchical

modeling.

Index Terms— spatially colored noise, source localiza-

tion, Bayesian estimation, hierarchical model

1. INTRODUCTION

For source localization in spatially colored noise, a noise

whitening approach using the generalized eigenvalue de-

composition (GEVD) in the MUSIC/ESPRIT estimator was

proposed [1]. In this approach, the noise covariance must be

known in advance. In the frequency domain, room reverber-

ation can approximately be viewed as an additive spatially

colored noise[2]. However, the noise covariance is unavail-

able because it is not possible to observe only reverberation.

The authors proposed a method of jointly estimating the noise

covariance and the source location using the Bayesian frame-

work [2]. In this paper, a hierarchical model [3] of the noise

covariance is introduced into this framework so that it can be

estimated efficiently with a relatively small quantity of data.

This feature is especially desirable for dynamic environments

in which moving sources are present.

In room acoustics, it is known that the resonant frequen-

cies are constant across the room and are independent of the

observation position. This fact suggests that the covariance

for reverberation can be modeled as a combination of a factor

that is common to the multiple observations and a factor that

is peculiar to a single observation block, as long as the obser-

vations are made in the same environment (room). The com-

mon factor is estimated using the hierarchical model while the

block variability is estimated by joint estimation.

2. MODEL OF SIGNAL AND NOISE

The observation vector consists of the short-time Fourier

transform (STFT) of the sensor inputs as zj,k = [Z1(ω, j, k),

· · · , ZM (ω, j, k)]T , where Zm(ω, j, k) denotes STFT of the

mth sensor input at the frequency ω and the time frame

index k. The symbol j denotes the index for the time

block which consists of K observations (frames) as Zj =
[zj,1, · · · , zj,K ]. The source direction θj = [θj,1, · · · , θj,N ]T

within the block is assumed to be invariant. The observation

vector is assumed to be modeled as

zj,k = Aj(θj)sj,k + vj,k (1)

where Aj(θj) denotes the array manifold matrix. The sym-

bols sj,k and vj,k are the source vector and noise vector, re-

spectively. The covariance matrix can be modeled as

Rj = E[zj,kzH
j,k] = AjΓjA

H
j + Kj (2)

where Γj = E[sj,ksH
j,k] and Kj = E[vj,kvH

j,k]. The sym-

bols M and N denote the number of sensors and sources,

respectively.

3. JOINT ESTIMATION OF PARAMETERS WITHIN
THE BLOCK

In this section, the joint estimation of the parameters {θj , Sj , Kj}
within the block [2] is briefly reviewed to facilitate the

understanding of the hierarchical model described in Sec-

tion 4. The symbol Sj denotes the block source as Sj =
[sj,1, · · · , sj,K ].

3.1. Conditional distribution of parameters

3.1.1. Likelihood

Assuming that vj,k has a complex Gaussian distribution, the

likelihood for the block observation Zj is given by

p(Zj |θj , Sj , Kj) ∝ |Kj |−K×

exp

(
−

K∑
k=1

[zj,k −Ajsj,k]H K−1
j [zj,k −Ajsj,k]

)

(3)
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3.1.2. Conditional distribution of sj,k

Assuming that the signal sj,k has the Gaussian priorN (0,Φ0),
its full conditional distribution is the following Gaussian dis-

tribution:

p(sj,k|Zj , θj , Kj) ∝ p(sj,k)p(Zj |θj , Sj ,Kj)
= N (μj,k,Φj) (4)

where

Φj =
(
AH

j K−1
j Aj + Φ−1

0

)−1

, μj,k = ΦjA
H
j K−1

j zj,k

(5)

3.1.3. Conditional distribution of Kj

It is assumed that the covariance Kj has the complex inverse-

Wishart distribution:

p(Kj) = inv-Wishart
(
ν0, (ν0K0)−1

)
∝ |Kj |−(ν0+M) exp

{−tr(ν0K0K
−1
j )
}

(6)

where ν0 is the virtual sample size. The conditional distribu-

tion of Kj is then the following inverse-Wishart distribution:

p(Kj |Zj ,Sj , θj) ∝ p(Kj)p(Zj |θj ,Sj , Kj)
= inv-Wishart(ν0 + K, [ν0K0 + Cj ]−1) (7)

where

Cj =
K∑

k=1

(zj,k −Ajsj,k) (zj,k −Ajsj,k)H
(8)

3.1.4. Conditional distribution of θj

Regarding θj , the Metropolis algorithm [3] is used since

Aj(θj) is a nonlinear function of θj and it is difficult to

obtain samples from the conditional distribution [4]. The

proposal distribution used in the Metropolis algorithm is the

following uniform distribution:

J(θ∗
j |θ(p)

j ) = U(θ(p)
j − δ,θ

(p)
j + δ) (9)

where p is the index for the iteration and δ is the appropriate

constant vector. The new sample θ∗ is accepted when the

following acceptance ratio exceeds a certain threshold rthr:

r =
p(Z|θ∗

j ,S
(p+1)
j , K

(p+1)
j )

p(Z|θ(p)
j , S

(p+1)
j ,K

(p+1)
j )

p(θ∗
j )

p(θ(p)
j )

(10)

3.2. Joint parameter estimation using the Gibbs sampler

The iterative algorithm for the joint estimation is as follows:

1. Set K
(1)
j and θ

(1)
j

z1,1, ..., z1,K

s1,1, ..., s1,K

zJ,1, ..., zJ,K

sJ,1, ..., sJ,K

�1 1, K

...

�J J, K

� �� K0

Block

Fig. 1. Hierarchical model of the covariance matrix.

2. Sample s
(p+1)
j,k ∼ p(sj,k|Zj , θ

(p)
j , K

(p)
j ) ∀k

3. Sample K
(p+1)
j ∼ p(Kj |Zj , S

(p+1)
j , θ

(p)
j )

4. Sample θ
(p+1)
j as: θ∗

j ∼ J(θ∗
j |θ(p)

j )

θ
(p+1)
j =

{
θ∗

j r > rthr

θ(p) otherwise

5. Go back to Step 2 with p← p + 1.

4. HIERARCHICAL BAYESIAN MODEL

4.1. Sampling model

Assuming that the noise covariance has a common structure

between the block observations {Z1, · · · , ZJ}, this common

structure is estimated using the hierarchical model. We as-

sume the following sampling model:

K1, · · · , KJ ∼ i.i.d. inv-Wishart(ν0, (ν0K0)−1) (11)

where the parameter set {ν0, K0} is common between the J
block observations. Fig. 1 depicts this model.

4.2. Conditional distribution of the common paramters

4.2.1. Conditional distribution of K0

According to the sampling model (11), the full conditional

distribution of K0 can be decomposed as:

p(K0|K1, · · · , KJ , ν0) ∝ p(K0)
J∏

j=1

p(Kj |K0, ν0) (12)

Assuming that K0 has the complex Wishart distribution

p(K0) = Wishart(η,Ψ) as the prior distribution, the full

conditional distribution becomes

p(K0|K1, · · · , KJ , ν0)

= Wishart(K0; η,Ψ)
J∏

i=1

inv-Wishart(Kj ; ν0, (ν0K0)−1)

∝ |K0|η+Jν0−M exp
{−tr

(
K0Λ−1

)}
∝ Wishart (K0; η + Jν0,Λ) (13)
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where

Λ :=

⎛
⎝Ψ−1 + ν0

J∑
j=1

K−1
j

⎞
⎠

−1

(14)

(14) is analogous to the harmonic mean [3].

4.2.2. Conditional distribution of ν0

Assuming that ν0 has the prior distribution p(ν0) ∝ exp(−αν0)
[3], its full conditional distribution becomes

p(ν0|K0, K1, · · · , KJ) ∝ p(ν0)
J∏

j=1

p(Kj |ν0,K0)

∝ exp (−αν0)
J∏

j=1

|ν0K0|ν0

ΓM (ν0)
|Kj |−(ν0+M) ×

exp
{−tr(ν0K0K

−1
j )
}

(15)

where ΓM (ν0) = πM(M−1)/2
∏M

m=1 Γ(ν0 − m + 1). The

symbol Γ(·) denotes the Gamma function.

4.3. Iterative algorithm

The procedure for obtaining samples of K0 and ν0 is as fol-

lows:

1. Set K
(1)
0 and ν

(1)
0 .

2. Sample {K(p+1)
1 , · · · , K(p+1)

J } using the procedure

described in Section 3.2.

3. Sample K0 as:

K
(p+1)
0 ∼ p(K0|K(p+1)

1 , · · · , K(p+1)
J , ν

(p)
0 )

4. Sample ν0 as:

ν
(p+1)
0 ∼ p(ν0|K(p+1)

0 , K
(p+1)
1 , · · · , K(p+1)

J )

5. Go back to Step 2 with p← p + 1.

5. EXPERIMENT

5.1. Experiment

5.1.1. Condition

Observations were generated by convolving the room impulse

responses with the source signal (Gaussian noise). The room

used for measuring the impulse response was a middle sized

meeting room (8 m× 9 m × 2.5 m) with a reverberation time

of 0.5 s. Two sound sources were located on a circle with a

radius of 1.5 m. The angular distance between the sources

Table 1. Parameters for analysis.

Parameter Value

Sampling frequency 16 kHz

Frame length (STFT length） 512 points　
Frame shift 128 points

Block length（observation time） 3200 points (0.2 s)

Frequency 1500 Hz

Number of iteration 1000
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Fig. 2. Variation of sample θ(p) during the iteration.

was 20◦ and the location of the source-pair was randomly se-

lected. Twenty observation blocks with different source-pair

locations were used for the estimation (J = 20). A micro-

phone array with 8 elements mounted on the head of a robot

was placed at the center of the circle. The parameters used for

the signal analysis are summarized in Table 1. As the initial

value θ(1), the ML estimate fluctuated by adding a uniform

noise was employed.

5.1.2. Results

Fig. 2 shows the variation in θ(p) during the iteration. It is

observed that the samples converged on the true value (the

dotted line) with a small number of iterations. The final esti-

mate θ̂ was obtained as the mean of the samples.

Fig. 3 compares the mean absolute error (MAE) of the

proposed method with those of the maximum likelihood

(ML) and the MUSIC estimators. MAE was calculated as

MAE = 1/(J ×Ntrial)
∑ |θ̂−θ|, where the number of trial

is Ntrial = 30. The proposed method has a smaller MAE

compared with the other two methods.

Fig. 4 indicates MAE for different methods used to ob-

taining K0.“Wishart”corresponds to the proposed method

described in Section 4.2.1. For“ Harm”, Λ in (14), which

is the conditional mean of the Wishart distribution, was

employed as K0. For“ Arith”, the arithmetic mean of

{K1, · · · ,KJ} was employed. It can be noted that MAE

was small for“Wishart” and“ Harm”. From these re-
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Fig. 3. MAE for different parameter estimation methods.
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Fig. 4. MAE for different methods used to obtain K0.

sults, it is deduced that the harmonic-mean-like operation in

(14) was essential for the hierarchical modeling of K0. For

“Reg”, σI was employed as K0. In this case, only the joint

estimation without hierarchical modeling was conducted. The

role of K0 = σI is the regularization of Cj . The difference

between“Wishart”and“ Reg”corresponds to the effect

of the hierarchical modeling when the quantity of data in a

block is small.

Fig. 5 shows MAE when the value of ν0 is fexed during

the iteration. It is observed that MAE is a minimum at around

ν0 = 102.

To evaluate the value of K0 that is estimated by the hi-

erarchical model, the obtained sample of K0 was fed to the
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Fig. 5. MAE for different ν0 values.
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Fig. 6. Evaluation of the K0 value estimated using GEVD-

MUSIC spatial spectral estimator.

GEVD-MUSIC. Fig. 6(b) shows the spatial spectrum. Com-

pared with the MUSIC spectrum obtained by using the stan-

dard eigenvalue decomposition (SEVD, spatially white as-

sumption) shown in (a), the spatial resolution was found to

have improved.

6. CONCLUSION

In this study, we investigated a method of estimating the noise

covariance using a hierarchical model. From the results of

the experiment, it was shown that the spatial resolution was

improved by the hierarchical modeling when the quantity of

data in a single observation block is small. In the proposed

method, the number of sources are assumed to be known in

advance, and was fixed at two in the experiment. In future,

we intend to address the estimation of the number of active

sources in this joint estimation framework [4].
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