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ABSTRACT

The gradient adaptive lattice (GAL) algorithm is very attractive
choice for active noise control of multiple sinusoidal interferences.
In the GAL algorithm, a selection of step-size parameters trades off
between convergence speed and steady-state performance. In this
paper, we develop a variable step-size scheme for the filtered-x GAL
(VSS-FxGAL) algorithm. This proposed algorithm achieves a good
compromise between fast convergence speed and low steady-state
mean-square error (MSE). In addition, comparing to the filtered-x
affine projection (FxAP) algorithm, the proposed algorithm per-
forms better when the filter input consists of multiple sinusoids.

Index Terms— Active noise control (ANC), adaptive filters,
gradient adaptive lattice (GAL) algorithm, variable step-size filtered-
x gradient adaptive lattice (VSS-FxGAL) algorithm

1. INTRODUCTION

Active noise control (ANC) system works on the principle of de-
structive interference between an original “primary” disturbance
sound field d (n) measured at the location “error” sensors (typically
microphones), and a “secondary” sound filed y (n) that is generated
by control actuators [1]. Conventional adaptive algorithms are likely
to be unstable in ANC due to the phase shift (delay) introduced by
the secondary path [1]. However, the well-known filtered-x struc-
ture [1] is suitable for ANC because of phase shift compensation.
Different types of adaptive filters using the filtered-x structure have
been developed for ANC [2].

Among these, the filtered-x least mean square (FxLMS) algo-
rithm is widely used due to its computational simplicity and robust-
ness [3]. However, non-white input signals can deteriorate its con-
vergence speed [4]. In order to overcome this problem, the filtered-x
affine projection (FxAP) algorithm [5] was developed, which was
found to be efficient due to a good tradeoff between convergence
speed and computational complexity [6]. However, interferences are
often consist of multiple sinusoids in ANC applications. When mul-
tiple sinusoidal interferences with wide amplitude dynamic range are
considered, the convergence speed of the AP algorithm is degraded.

For improving stealth ability of submarines, self-noises gener-
ated by machinery components should be damped [7]. These self-
generated noises consist of dominant multiple sinusoids and back-
ground colored noise, so ANC system must be able to damp the
dominant multiple sinusoids.

The gradient adaptive lattice (GAL) algorithm [8] has certain
theoretical properties which promise superior performances over
transversal filters, especially for sinusoidal filter inputs [9]. In partic-
ular, convergence speed of the GAL algorithm is fairly independent
of the statistics of the reference signals. However, in stability bound,
an initial convergence speed of the GAL algorithm is slower than

Fig. 1. A block diagram of the active noise control system based on
the lattice structure [10].

that of the AP algorithm. In order to improve the initial convergence
speed of the GAL algorithm, the step-size parameter needs to be
controlled.

In this paper, we design a variable step-size (VSS) scheme for
the filtered-x GAL (FxGAL) algorithm. Previously, the ANC system
based on the lattice structure was proposed [10]. In this algorithm,
the order update of the estimation error was modified to avoid the
estimation of the primary noise, so that local estimation errors were
directly obtained from the residual error. Fig. 1 shows the structure
of the lattice-based ANC system proposed in [10]. The VSS-FxGAL
algorithm is developed by applying the VSS scheme to the lattice-
based ANC system in Fig. 1. The lattice predictor in the struc-
ture decouples the filtered reference input so that the system delivers
good performances even with non-white input signals. Furthermore,
by using the VSS scheme, the proposed algorithm provides fast con-
vergence speed and low steady-state mean-square error (MSE) as
compared to the FxGAL algorithm.

2. FILTERED-X GRADIENT ADAPTIVE LATTICE
ALGORITHM FOR ANC

Consider the lattice predictor that transforms the filtered reference

signal v (n) = x (n) ∗ ĥ (n) into the orthogonal filtered backward

prediction errors b̂m(n), 0 < m < M − 1, where ĥ (n) denotes
the estimated secondary path, and M denotes the order of the lat-
tice predictor [8]. This orthogonalization is carried out in the lattice
through formulas:

f̂m+1 (n) = f̂m (n)− κm (n− 1) b̂m (n− 1) , (1)

b̂m+1 (n) = b̂m (n− 1)− κm (n− 1) f̂m (n) . (2)
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The orthogonality of the filtered backward prediction errors b̂m (n)
is expressed as [8]

E
{
b̂i (n) b̂j (n)

}
= 0, i �= j. (3)

In the GAL algorithm for ANC [10], the reflection coefficients
κm (n) are adjusted using a recursive formula

κm (n) = κm (n− 1) + μ̃
ξm(n)+δ

[
f̂m+1 (n) b̂m (n− 1)+

f̂m (n) b̂m+1 (n)
]

(4)
where μ̃ is the step-size parameter, δ is the regularization con-
stant, and ξm (n) is the power of both the forward prediction er-
ror and the delayed backward prediction error at the mth stage,
which can be recursively estimated as ξm (n) = βξm (n− 1) +

(1− β)
[
b̂2m (n) + f̂2

m (n)
]

where β is the smoothing parameter.

The mth stage adaptive coefficient wm (n) is updated to minimize
the power of the mth stage local estimation error:

em (n) = em−1 (n) + h(n) ∗ [wm (n) bm (n)] (5)

where

wm (n) = wm (n− 1)− μ

σ2
b̂m

(n) + δ
b̂m (n) em (n) (6)

and e−1 (n) = d (n) is the primary noise. h (n) is the secondary
path and ∗ denotes convolution. bm (n) is the mth stage backward
prediction error of the reference signal x (n) obtained by the reflec-
tion coefficients in Eq. (4). μ denotes the step-size parameter, and
σ2
b̂m

(n) denotes the power of the mth stage filtered backward pre-

diction error which also can be recursively estimated similarly to
ξm (n). To apply the GAL algorithm in Eqs. (5), (6) to ANC sys-
tem, the primary noise d (n) should be available. However, in ANC
situation, the primary noise is measured by using an error sensor in
a combined form with the control signal. This requirement can be
satisfied by exploiting a modular structure of the lattice filter. From
the order-update in Eq. (5), a modified order-update equation can be
obtained as [10]

eM−m−1 (n) = eM−m (n)− wM−m−1 (n) b̂M−m−1 (n) (7)

where eM−1 (n) = e (n) is the residual error at the error sensor.
In the above equation, the mth stage local estimation error is com-
puted in reverse order from the residual error. This process can also
be viewed as a process for synthesizing the primary noise from the
residual error.

3. VARIABLE STEP-SIZE FXGAL

In the following, we derive a VSS-FxGAL algorithm by combining
the FxGAL algorithm presented in the previous section with a vari-
able step-size (VSS) scheme.

For convenience of the derivation, we use an approximation

b̂m (n) em (n) ≈ b̂m (n) eM−1 (n) which is justified by the or-
thogonality of the filtered backward prediction errors. Using vector
notations, the update equation in Eq. (6) can be rewritten as

w (n) = w (n− 1)− μ (n)Σ−1 (n) b̂ (n) eM−1 (n) , (8)

where the residual error eM−1 (n) is defined as

eM−1 (n) = d (n) + h (n) ∗
[
wT (n− 1)b (n)

]
(9)

and the primary noise d (n) consists of the target noise p (n) that
needs to be controlled and the system noise s (n) that are un-
correlated to the reference signal x (n). The vector w (n) =

[w0 (n) , . . . , wM−1 (n)]
T

is the adaptive filter coefficients vector.

The matrix Σ (n) = diag
{
σ2
b̂0

(n) , . . . , σ2
b̂M−1

(n)
}

is a diagonal

matrix with diagonal elements given by the filtered backward predic-

tion error powers. The vector b̂ (n) =
[
b̂0 (n) , . . . , b̂M−1 (n)

]T
is the filtered backward prediction errors vector. The vector
b (n) = [b0 (n) , . . . , bM−1 (n)]

T
is the backward prediction

errors vector. The positive scalar μ (n) in Eq. (8) denotes the vari-
able step-size parameter. Using the adaptive filter coefficients at
time n, the a posteriori error can be defined as

ε (n) = d (n) + h (n) ∗
[
wT (n)b (n)

]
. (10)

We first apply Eq. (8) into Eq. (10) and eliminate w(n − 1) using
Eq. (9). Then, by assuming that the secondary path is well estimated,

i.e., h (n) ≈ ĥ (n), we have

ε (n) =
[
1− μ (n) b̂T (n)Σ−1 (n) b̂ (n)

]
eM−1 (n) . (11)

Due to uncorrelation between the system noise s (n) and the refer-
ence signal x (n), the ideal ANC systems will leave only the system
noise s (n) in the primary noise d (n). Therefore, the ideal step-size
parameter μ (n) should satisfy the condition

σ2
ε (n) = σ2

s (n) , ∀n (12)

where σ2
ε (n) = E

{
ε2 (n)

}
is the power of the a posteriori error

and σ2
s (n) = E

{
s2 (n)

}
is the power of the system noise. Squaring

Eq. (11) and taking the expectations, we obtain

E

{[
1− μ (n) b̂T (n)Σ−1 (n) b̂ (n)

]2}
σ2
eM−1

(n)

= σ2
s (n) ,

(13)

where the independent assumption in [11] is used and the condi-
tion in Eq. (12) is applied. Using the orthogonality of the filtered

backward prediction errors and the approximation E
{
b̂4m (n)

}
≈

E
{
b̂2m (n)

}2

, Eq. (13) is further simplified to

[1− μ (n)M ]2σ2
eM−1

(n) = σ2
s (n) , (14)

where E
{
e2M−1 (n)

}
= σ2

eM−1
(n) is the power of the residual

error. From Eq. (14), it is straightforward to obtain a variable step-
size parameter in the nth iteration:

μvss (n) =
1

M

[
1−

√
σ2
s (n)

σ2
eM−1

(n)

]
. (15)

Now the obtained variable step-size parameter can be used to replace
the step-size parameters in Eqs. (4) and (6). The residual error power
can be estimated in a recursive form:

σ̂2
eM−1

(n) = λσ̂2
eM−1

(n− 1) + (1− λ) e2M−1 (n) , (16)

where 0 < λ < 1 is the smoothing parameter.
However, the system noise power σ2

s (n) is not available in ANC
system. To solve this problem, we first assume that the adaptive
filter has converged fairly enough, thereby the secondary path is well
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estimated, i.e., p (n) ≈
[
wT (n) b̂ (n)

]
. Under this assumption, the

local estimation error at the (M − 2)th stage can be written as

eM−2 (n) ≈ s (n) + ŷM−1 (n) , (17)

where ŷM−1 (n) = wT
M−1 (n) b̂M−1 (n) is the (M − 1) estimated

stage adaptive filter output. The system noise power can be estimated
as

σ2
s (n) ≈ σ2

eM−2
(n)− σ2

ŷM−1
(n) . (18)

It is important to note that this estimates depends only on the signals
available within ANC system, i.e., the (M − 2)th stage local esti-
mation error, eM−2 (n), and the (M − 1)th stage estimated adap-
tive filter output, ŷM−1 (n). Based on these findings, Eq. (15) can
be rewritten as

μvss (n) =
1

M

⎡
⎣1−

√
σ̂2
eM−2

(n)− σ̂2
ŷM−1

(n)

σ̂2
eM−1

(n)

⎤
⎦ , (19)

where σ̂2
eM−2

(n) is the (M − 2) stage estimated local estimation

error power and σ̂2
ŷM−1

(n) is the (M − 1) stage estimated adap-
tive filter output power that can be recursively calculated similarly
to σ̂2

eM−1
(n).

Finally, some practical issues need to be considered. First, a
very small positive number δ should be added to the denominator
in Eq. (19) to avoid division by zero. Second, under the our as-
sumptions that the adaptive filter has converge fairly enough, we
have σ2

eM−2
(n) ≥ σ2

ŷM−1
(n) and σ2

eM−2
(n) − σ2

ŷM−1
(n) ≈

σ2
eM−1

(n). Nevertheless, the estimates of these parameters could
lead to some deviation from the previous theoretical condition.
Therefore, we will take absolute values in Eq. (19). Hence, the
variable step-size parameter is rewritten as

μvss (n) =
1

M

∣∣∣∣∣∣∣1−
√√√√

∣∣∣σ̂2
eM−2

(n)− σ̂2
ŷM−1

(n)
∣∣∣

σ̂2
eM−1

(n) + δ

∣∣∣∣∣∣∣ . (20)

Third, we use the smoothing parameter β (n) = 1 − μvss (n) for
the estimates of the parameters such as ξ (n), σ2

b̂
(n) in the proposed

algorithm.

4. SIMULATION RESULTS

Computer simulations were performed to assess the performance of
the proposed VSS-FxGAL algorithm. The sampling rate was 2 kHz.
All measured acoustic echo paths (primary and secondary ones) are
plotted in Fig. 2(a), (b). We assumed that the secondary path was

known, i.e., h (n) = ĥ (n). The adaptive filter order was set to
M = 50. In vehicle/ship environments, the reference signal often
consists of multiple sinusoids and another colored noise. Thus, in
the computer simulations, the reference signal x (n) was assumed as
the sum of sinusoids with colored noise as given by

x (n) =

I∑
i=1

Ci sin (2πfin+ θi) + φ (n) (21)

where I is the number of the sinusoids, Ci, fi and θi are amplitude,
frequency and phase of the sinusoids, respectively, and φ(n) is col-
ored noise. The power spectrum density of the reference signal is
plotted in Fig. 2(c). The system noise is a colored Gaussian signal
generated by filtering white Gaussian noise (of zero mean and unit
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Fig. 2. Impulse response of (a) the primary path, (b) the secondary
path, and (c) the power spectrum density of the reference signal.
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Fig. 3. MSE of the FxGAL algorithms (μ = 0.01, μ = 0.001) and
VSS-FxGAL algorithm.
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Fig. 4. MSE of the FxAP algorithms (μ = 0.03, μ = 0.002, μ =
0.001) and VSS-GAL algorithm.

variance) with a first order autoregressive filter of the transfer func-
tion 1

/(
1− az−1

)
where a = 0.95. The target noise-to-system

noise ratio (TSR) was 30dB. In all experiments, the results are aver-
aged over 30 independent trials.

In Fig. 3, the learning curve of the VSS-FxGAL algorithm was
compared with those of the FxGAL algorithm for two different step-
size parameter cases, i.e., μ = 0.01 and μ = 0.001. It can be noticed
that the VSS-FxGAL algorithm has convergence speed similar to the
FxGAL algorithm with μ = 0.01, and it achieves low steady-state
MSE, which is closer to the one obtained by FxGAL algorithm with
μ = 0.001.

In Fig. 4, the learning curve of the VSS-FxGAL algorithm was
compared with those of the FxAP algorithm for three different step-
size parameter cases, i.e., μ = 0.03, μ = 0.002, and μ = 0.001.
The projection order was set to p = 4. It can be noticed that the
VSS-FxGAL algorithm outperforms the FxAP algorithm in terms of
convergence speed and steady-state MSE.

Finally, in Fig. 5, the steady-state residual error power spectrum
density of the VSS-FxGAL algorithm was compared with that of the
FxAP algorithm with μ = 0.001, p = 4. The VSS-FxGAL, FxAP
algorithms accurately recover the system noise.

5. CONCLUSIONS

A new VSS-FxGAL algorithm for ANC has been proposed in this
paper. Being compared to the classical FxGAL and FxAP algo-
rithms, the VSS-FxGAL algorithm has superior performance when
the primary noise consists of multiple sinusoids. Computer sim-
ulations in the context of ANC showed that the proposed method
achieved faster convergence speed as well as smaller steady-state
MSE than the FxAP algorithms.
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