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ABSTRACT

By using room impulse response shortening and reshaping it is pos-
sible to reduce the reverberation effects and therefore improve the
perceived quality. This may be achieved by a prefilter that modifies
the overall impulse response to have a faster decay. The traditional
filter shortening approach using least-squares methods is fast and di-
rectly computable, but it suffers from late echoes. Newer approaches
using the p-norm overcome this drawback but are computationally
very demanding, as the optimization process uses a gradient-descent
approach with slow convergence. In this work we propose a mod-
ification to this approach that results in a significantly faster con-
vergence. With this modification, the algorithm is less likely to be
trapped in a local minimum and therefore also leads to a better con-
vergence point. The method will be demonstrated on simulated and
real-world room impulse responses.

Index Terms— Room impulse response (RIR), shortening, p-
norm, gradient method, optimization

1. INTRODUCTION

In order to reduce the influence of the reverberation in acoustic
scenes and to improve the perceived quality the concepts of room
impulse response (RIR) shortening and reshaping have been intro-
duced [1, 2, 3]. Using a filter to either preprocess the loudspeaker
signal or postprocess the recorded microphone signal, the overall
impulse response is equalized [4].

It is not necessary to invert the channel and recover the exact
source signal [5, 6, 7]. As proposed in [2, 3] it is sufficient to shape
the overall RIR with respect to the human auditory system. There-
fore, for reducing the reverberation, it is sufficient to equalize the
RIR in a such way that the audible echoes are removed, while the in-
audible ones may stay unaffected. As a further benefit, this approach
lightens the pressure of designing the prefilter.

The method in [3] exploits the fact that echoes may remain in the
signal and are unperceivable if they fall below the temporal mask-
ing curve of the human auditory system. As shown in [8] the exact
temporal masking curve is signal dependent, but an average signal-
independent masking curve has been found in [9] that is triggered by
the direct sound and was used in [3] to design the prefilter.

This single-channel approach from [3] is not designed for spatial
robustness, and small movements of speaker or microphones may
result in substantially changed RIRs and a reduced overall perfor-
mance. Based on the spatial sampling principle [10] a multichannel
extension has been proposed in [11]. It allows for an equalization
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of multiple points in space by using several loudspeakers and micro-
phones. When the sampling points are chosen dense enough accord-
ing to the spatial sampling principle an entire area can be equalized.
This approach is more robust, as it allows for small movements of the
listener inside this area. As these methods are computationally very
demanding, a CUDA implementation using modern graphic hard-
ware was presented in [12].

The methods for prefilter design in [2, 3] are gradient-descent
approaches, which minimize either an Euclidean norm, an #,-norm,
the oo-norm or a combination of them. These norms are necessary,
as the least-squares methods based on the ¢2-norm do not allow for
a precise control of the very small coefficients in the tail of the re-
shaped RIR. Furthermore, the errors are distributed non-uniformly
across the time coefficients, which results in late audible echoes. As
shown in [3], using the high non-linearity of the co-norm the error
distribution becomes uniform which allows for a much more precise
error control and great reduction of audible echoes. Although com-
putationally little more demanding, the £,-norm, with 10 < p < 20,
inherits these benefits and allows for a much faster convergence,
as every iteration of the gradient descent takes multiple time coef-
ficients into account.

In this work we propose to speed up calculations for the £),-norm
by a modification of the gradient, as the simple approach is not op-
timal due to the windowing using the inverse of the average tempo-
ral masking curve and the non-quadratic properties of the ¢,-norm.
Using this modification, the gradient-descent method needs signifi-
cantly less iterations and allows for a better solution, as it will usually
not be trapped in local minima so often. For the sake of conciseness
we present the modification for the single-channel case, as the multi
position and multichannel extension is quite straightforward.

In the next section we briefly summarize the approach based on
the £,-norm optimization of the time-domain representation of the
global RIR. In Section 3 we present the proposed modification of the
gradient calculations, which allows for the speed up. In Section 4 we
show some results on simulated and real-world data and, finally, in
Section 5 we give some short conclusions.

2. ROOM IMPULSE RESPONSE RESHAPING

Let ¢(n) denote the RIR with the length L.. With h(n) being a
prefilter of length Ly, the overall system g(n) is given by

g9(n) = h(n) x ¢(n) = Ch, M
with C being a L, X Ly, convolution matrix of ¢(n). The length of

g(n)is given by Ly = Lj, + L. — 1. The task of filter reshaping is
to design h(n) in such a way, that g(n) contains no audible echoes.
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Fig. 1. (a) Simulated RIR ¢(n) with 800 taps. (b) Energy of the co-
efficients of ¢(n). The light blue line indicates the average temporal
masking curve.

Here, we follow [2, 3] and define a desired and unwanted part
of the global RIR using two windows wg(n) and wy, (n) as gq¢(n) =
g(n) - wa(n) and g.(n) = g(n) - wy(n) respectively. As proposed
in [3], we use

wa =[0,0,...,0,1,1,...,10,0,...,0]" ®)
N—— ——
Ny Ny N3
and
w, = [0,0,...,0, wg |© (3)
—

N1+Ng N3

with N1 = to - fs, N2 = 0.004s - fs and N3 = Lg — Ny — Na,
where fs is the sampling frequency and to the time taken by the
direct sound. The window wy is defined using the inverse of the
average temporal masking curve as
wo(n) = mm log(n/(N1i+Ns))+0.5 )

with No = (0.2s+t%0)- fs and time index n ranging from N;+No+1
to Ly, — 1. In Fig. 1(a) a simulated RIR and in Fig. 1(b) the energy
of its coefficients is shown. Additionally, in Fig. 1(b) the inverse of
wo, the average temporal masking curve, is shown. All coefficients
above the average temporal masking curve are perceived as echoes.

The goal of RIR reshaping is to maximize some function of
|ga(n)| while minimizing some other function of |g.(n)|. For ex-
ample, this could be a maximization of the energy of gq(n) while
the energy of g, (n) would be minimized. A least-squares criterion
(i. e. £2-norm) leads to the minimization problem

5
S.T.: gl'g, = constant )

{ MINy : f(h) = gl 8.
and can be solved by using a generalized eigenvalue decomposition
[3]. As this approach suffers from late echoes, due to poor control of
the tail of g(n) with some very small values, in [3] a criterion based
on the £,-norm has been proposed. The corresponding optimization
problem is given by

(6)

MINy, : f(h) = log (f“(h))

fa(h)
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with

Lg—1 Pu
Fu) = llgullo, = [ D2 lgu(n)™ ™
n=0
and .
Lg—1 Pd
fa(h) = ||gallp, =

> lga(n)l )
n=0

with p,, and pg being integers. The learning rule for the gradient-
descent reads

b =h' = p(1) - Vi f(h') )
with 1 .
_ L
Vinf(h) = o5 Clby = e Clha (10)
where
bu(n) = wu(n)-sgn(gu(n))-lgu(n)|"~, (1)
ba(n) = wa(n)-sgn(ga(n)) - lga(n)|**~", (12)

and 1(1) being an adaptive step-size parameter.

3. MODIFIED GRADIENT APPROACH

In order to justify the new approach, we first take a closer look on
some details of the windowing process g (n) = g(n) - wu(n), the
window is given in (4) and (3), and the calculation of the gradient,
given in (9) and (10).

The window wq (n) in (4) is the inverse of the temporal masking
curve. The ratio of the smallest and biggest values is in the order of
several magnitudes. The windowing process g.(n) = g(n) - wu(n)
amplifies the small values in the tail of the RIR, so that the overshoot
of the RIR over the average temporal masking curve becomes lin-
earized. On a linear scale, the highest peaks contribute to the highest
perceived reverberation. This allows for a simple formulation of the
objective function in (6), whose minimization also minimizes these
highest coefficients in the global RIR and therefore reduces the per-
ceived reverberation. In (9) a gradient-descent approach with the
Euclidean gradient is used for the minimization process.

The windowing process can be also interpreted as a highly non-
linear scaling of the individual dimensions of h. The gradient in
(10) is therefore not optimal. An example is shown in Fig. 2. In
Fig. 2(a), a reshaping filter for the already mentioned example from
Fig. 1, is given. The energy decay, as shown in Fig. 2(b), has
also an attenuation of several magnitudes. The gradient Vi, f(h'),
as calculated using (10), is shown in 2(c) and has coefficients of the
same magnitude in all parts. When making a step of the gradient
descent in (9), only very small step-size p is allowed, in order to
achieve convergence in all parts of the RIR.

We propose therefore, a modified gradient update rule

W' =n' — 4(l) - w, © Vi f(h') (13)

with ® being a point-wise multiplication of two vectors and w,(n) a
window that approximately inverts the scaling property of the initial
windowing process. For example, w,(n) can be obtained by taking
the reciprocal of wo(n).

With this modification the step-size can be larger, and this leads
to faster convergence, and the gradient-descent procedure is less
likely to be trapped in a local minimum.

The modification in (13) may be interpreted as a multiplication
with a diagonal approximation of the Hessian of f(h). Unfortu-
nately, the limited space of this work does not allow for a detailed
derivation of this approach.
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Fig. 2. (a) Reshaping filter A(n) with the same length as ¢(n) af-
ter 5000 iterations. (b) Energy of the coefficients of h(n). (c) The
gradient A (n) using the normal gradient.

4. SIMULATIONS

Both gradient methods have been compared on simulated and real
RIRs. The parameters have been set as in [13], e. g. pq = 10 and
pu = 20. Besides the convergence speed and the objective value,
the results have also been examined in terms of reducing the rever-
beration using the normalized perceivable reverberation quantiza-
tion measure nPRQ, which is derived from the pRQ measure from
[13]. This measure captures the average magnitude of the impulse
response taps that overshoot the temporal masking limit on a loga-
rithmic scale and that is above —60 dB compared to the direct sound.
It is calculated as

Lo—1
1 9
nPRQ = —- ge(n (14)
el " 2

when ||ge||o > 0 and 0 otherwise, with

ge(n) = 201og,(lg(n)] - wu(n)) (15)
for [g(n)| > #(n) n > Ni + N2 and 0 otherwise with ||gr||,
denoting ¢ pseudo norm, which counts the number of nonzero ele-
ments of a vector. With perfect reshaped RIR nPR(Q = 0. Other-
wise it measures the average overshoot in dB.

The results of the RIR from Fig. 1 are compared in Fig. 3. In
Fig. 3(a) the overall RIR g(n) after 5000 iterations using the normal
gradient is shown. Here, the RIR could be almost perfectly reshaped,
with only a few coefficients above the temporal masking limit. The
nPRQ is reduced from 3.71 to 0.75 as shown in Table 1.

In Fig. 3(b) the results of the modified gradient are presented.
Here, we achieve a perfect reshaping with nPRQ = 0, and the co-
efficients are well below the temporal masking limit, which results
in a quite robust design for a large class of signals, for which the
reverberation becomes inaudible. In 3(c) the development of the ob-
jective function is given. The new method converges significantly
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Fig. 3. (a) The overall impulse response g(n) = c¢(n) * h(n) using
the normal gradient with L. = L;, = 800. (b) g(n) using the
modified gradient. (c) The value of the objective function f(h) for
both approaches.

Table 1. Comparison of the perceived reverberation using nPRQ-
measure in [dB] for different configurations. (S) denotes simulated
RIR, and (M) a measured RIR in a real room.

Problem Size (Taps) || 800 (S) | 2000 (S) | 4000 (M)
Unmodified RIR 3.71 4.35 10.62
Standard method 0.75 2.71 5.75
New method 0.00 0.08 0.00

faster and converges to a smaller value, which results in the already
mentioned much better overall RIR.

In Fig. 4 the results of a simulated RIR with L. = 2000 are
given. With the longer RIR, we can see the faster convergence and a
better result for the modified gradient again. The nPRQ measure is
reduced from 4.35 to 2.71 and 0.08, respectively. Only the modified
gradient gives an almost perfect reshaping.

In Fig. 5 the results for a real RIR, measured in a seminar room
with L. = 4000, are given. The room has a high reverberation with
nPRQ = 10.62. The standard method is able to reduce the nPRQ
by 5, but the overall RIR still contains quite audible reverberations.
The modified gradient is able to remove all echoes with nPRQ = 0.
The standard method gets trapped in a local minimum.

5. CONCLUSIONS

In this work we have proposed a modification to the gradient based
calculation for room impulse response reshaping algorithm based on
p-norm optimization. This modification allows for a faster conver-
gence. Additionally, the new algorithm is able to achieve better re-
sults, as it does not get trapped in local minima so often. The validity
of the approach has been shown on simulated and measured room
impulse responses.
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Fig. 4. (a) A simulated RIR with the length 2000. (b) The overall
impulse response g(n) = ¢(n)*h(n) using the normal gradient with
Ly = 2000. (c) g(n) using the modified gradient. (d) The values of
the objective function f(h) for both approaches.
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