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ABSTRACT

Basis pursuit has been shown to be an effective method of 
solving inverse problems with a small amount of data when 
the system to be determined has a sparse representation.  
Adaptive filters fall under this general category of problems.  
Here, we use the echo cancellation context to introduce a 
method of solving the basis pursuit problem with an 
iterative method based on the proportionate normalized 
affine projection algorithm (PAPA).  Earlier, it has been 
shown that PAPA can be derived from a basis pursuit 
perspective.  Here we refine the assumptions made in those 
derivations and show that an iterative form of PAPA yields 
the same results as basis pursuit without resorting to the 
simplex method. The resulting algorithm has extremely fast 
convergence for adaptive filters with very sparse impulse 
responses. Simulations using the new iterative approach are 
also presented. 
 
Index Terms— Basis pursuit, adaptive filters, echo 
cancellation, sparse solutions 

1. INTRODUCTION 
 
Basis pursuit (BP) [1] has been shown to be an effective 
method of solving inverse problems with a small amount of 
data when the system to be determined has a sparse 
representation. This is especially attractive to adaptive 
filtering problems in that it promises the possibility of fast 
convergence when the solution the adaptive filter seeks is 
sparse.  One such application is network echo cancellation 
where a number of approaches exploiting its sparse nature 
have been discussed extensively in the literature, in 
particular the proportionate normalized least-mean-square 
(PNLMS) and the proportionate affine projection algorithm 
(PAPA) [2,3].  One feature of BP is that it requires the 
minimization of an 1L norm with equality constraints, i.e., 

 
1

min  subject to Th d X h . (1) 
Typically this is accomplished using the simplex method 
[4]. Here, we propose an iterative approach which is a bit 
more flexible and amenable to the adaptive filtering context.  
      Recently, the link between PNLMS, PAPA, and basis 
pursuit has been shown [5].   There, the authors assume the 
a posteriori PAPA scaling matrix to be approximately equal 
to the a priori scaling matrix. This assumption establishes 
the link between the adaptive filtering algorithms and basis 
pursuit. However, this is not always an accurate 
approximation because often these two matrices can be 
significantly different. We propose an iterative method to 
improve the approximation.  The signal model is described 
in section 2. Section 3 describes the link between PAPA and 
BP, section 4 presents the iterative method, and section 5 
shows the simulation results and a discussion based on these 
results. The paper is concluded by section 6. 
 

2. SIGNAL MODEL 
 
The observed or desired signal is given by 
 ,Td n n v nx h  (2) 
where n is the discrete time index 
 0 1 1  ... T

Lh h hh  (3) 
is the L-tap impulse response of the system to be identified, 
the superscript T denotes the transpose of a vector or a 
matrix, 
 ( ) ( ) ( 1) ... ( 1) Tn x n x n x n Lx  (4) 
is a vector containing the L most recent samples of the zero 
mean input at time n, and v(n) is the zero mean additive 
white Gaussian noise which is independent of the input. In 
the affine projection algorithm (APA) and PAPA [3] it is 
typical to expand equation (2) to consider, say, M samples 
at a time where1 M L , thus, 
 ( ) ( ) ( )Tn n nd X h v  (5) 
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where  
  1  ... 1n n n n MX x x x , (6) 

 ( ) ( ) ( 1) ... ( 1) Tn d n d n d n Md , (7) 
and 
 ( ) ( ) ( 1) ... ( 1) T

n v n v n v n Mv . (8) 
 
The aim is to find an estimate of h  with an adaptive filter 

 0 1 1
ˆ ˆ ˆˆ   ...

T

Ln h n h n h nh  (9) 

such that the estimation error given by 
2

2
ˆ ( )nh h is 

bounded by an upper bound of , which is a small positive 
number and 2

2 is the square of the 2L -norm. 
     The BP approach to this problem (in the noise-free case) 
is thus,  
 

1
ˆ ˆmin  subject to .Tn n n nh d X h  (10) 

It has been shown that if ˆ nh  and nX  meet certain 

conditions, BP provides the sparsest solution for ˆ nh [1].  

The condition on ˆ nh is that it be k -sparse, that is only 

k of its elements are non-zero.  The conditions on nX  are 
that it has M columns where M  is some multiple of k .  
Typically, for our problems, M is from 10 to 25 times k .  
The matrix T nX  must also satisfy the uniform 
uncertainty principle (UUP) which states that for any k -
sparse vector f , 

 
22 2

2 22
0.8 1.2TM M

n
L L

f X f f . (11) 

This can be roughly interpreted as stating that any k -sparse 
vector f  shouldn’t be either too much in the null space or 
too much in the signal space of T nX .  Empirically, we 
have observed that for Gaussian random excitation 

T nX satisfies the UUP. 
     When the above mentioned conditions are met one can 
use the simplex method to solve (10).  The impressive result 
is that the solution is found using only M samples of filter 
outputs where typically M  is much less than L , the filter 
length.  This demonstrates the power of the sparseness 
constraint. 
 

3. LINK BETWEEN BP AND PAPA 
 
The affine projection algorithm is 
 ˆ 1Tn n n ne d X h , (12) 

 
1ˆ ˆ 1 + Tn n n n n nh h X X X e . (13) 

Defining the projection matrix, 

 
1T Tn n n n nP I X X X X , (14) 

the APA of (12) and (13) can be expressed as 
 ˆ ˆ 1 +n n nh Ph h , (15) 
where 

 
1Tn n n n nh X X X d . (16) 

The details are shown in [5]. The vector nh is the 
minimum- 2L -norm solution of the linear system of 

M equations, Tn n nd X h .  That is, 

 
2

2
min  subject to .Tn n n nh d X h  (17) 

Replacing the minimum- 2L -norm solution with a minimum-

1L -norm solution we have the optimization problem, 

 
1

min  subject to ,Tn n n nh d X h  (18)

which is the BP problem of (10). Using this optimization 
problem and the method of Lagrange multipliers it is 
relatively straight forward [5] to show that 

 
1Tn n n n n n nh G X X G X d . (19) 

This leads to the coefficient update formula,  

 1

ˆ ˆ 1

            + T

n n

n n n n n n

h h

G X X G X e
 (20) 

where 
 ˆ 1Tn n n ne d X h  (21) 
and 
 ˆn diag nG h . (22) 

But, (20) is intractable and there is no obvious solution for 
ˆ nh .  In [5] this was resolved by using the simple 

expedient, 
 1n nG G  (23) 
thus, removing the difficulty and arriving at the un-relaxed 
and un-regularized PAPA algorithm,  

 1

ˆ ˆ 1

   + 1 1 .T

n n

n n n n n n

h h

G X X G X e
 (24) 

 
3. ITERATIVE METHOD 

We propose an iterative method to solve (21) and (20) that 
will avoid the expedient of (23).  The idea is to use (21) and 
a relaxed and regularized version of PAPA and then 
repeatedly feedback the resulting coefficient vector.  This 
results in the following algorithm: 
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Algorithm One 
 

1) Initialize 0ˆ Th  
2) For 1 through i I  

a. 1ˆi iTn ne d X h  

b. 1 1ˆi idiagG h  

c.

1

11 1

ˆ ˆ

+ .

i i

i i iTn n n

h h

G X X G X I e

 
The algorithm is initialized with 0ˆ Th , where 

2010 , with 0.01 , and . Using this method one 
obtains virtually the same result as when the simplex 
method is used to solve the optimization problem of (10).  
Again, the impressive aspect of this algorithm is that 
convergence is observed in only M sample periods. 
     One advantage of the iterative approach of algorithm one 
over the simplex method is that the iterations can easily be 
implemented using data from different sample periods and 
the complexity of the many iterations can be spread out over 
those samples.  In addition, we may add “gear shifting” to 
the stepsize parameter, , to accelerate convergence and 
vary the iteration parameter, I , to lower the computational 
complexity once the algorithm has converged. These 
considerations suggest the following approach:  
 

Algorithm Two 
 

1) Initialize 0.5 , initI I , ˆ T
nh where 

2010   

2) let 0ˆ ˆ nh h  and 0i  
3) while  i I  

a. 1i i  

b. 1ˆi iTn ne d X h  

c. 1 1ˆi idiagG h  

d.

1

11 1

ˆ ˆ

 +

i i

i i iTn n n

h h

G X X G X I e

 
4) let ˆ ˆ Inh h  and increment n  

5) If 
2

2

Ie , let 0.005 and 1I ,  otherwise 

0.5 and initI I  
6) goto step 2.  

Step (5) is the gear shifting step. Here, if 
2

2

Ie , where 

is a threshold typically set in the neighborhood of 0.005 , 
we lower the stepsize and decrease the number of iterations, 
I .  Otherwise we use the initial stepsize (set for fast 
convergence) and the initial number of iterations initI  which 
is typically set in the neighborhood of 10  to 20 .  
 

4. SIMULATIONS 
 
In order to verify the performance of these algorithms, 
simulations were performed based on the signal model 
described in section 2.  All the simulations were done at a 
sample rate of 8000 samples per second. 
     For algorithm one we set the number of iterations to 800, 
the overall length of the impulse response, L , is set to 100 
and the signal to noise ratio (SNR) is set to 40 dB. The 
sparsity of the impulse response (where the sparsity of a 
vector is defined as the number of non-zero elements) is set 
to 3k  and M is set to 60. The algorithm is applied to 
each sample period and compared to the simplex method 
applied to the optimization problem of (18) (again, for each 
sample period). The coefficient error is shown in figure 1 
where there is an echo path change at 300n .  The two 
algorithms have roughly the same performance, thus 
verifying that algorithm one is a good replacement for the 
simplex method.   
     In the second simulation, algorithm two is compared to 
PAPA.  The signal to noise ratio (SNR) is set to 40 dB, L   
is set to 100, and k  is set to 3.  The maximum iterations per 
sample, initI  is set to 12 and M is set to 30 .  Figure 2 shows 
the coefficient error of the two algorithms.  Algorithm two 
converges considerably faster than PAPA. 
      In the third simulation a more realistic situation 
comparable to the network echo cancellation problem is 
considered.  Here, the echo path impulse response is shown 
in Figure 3.  The SNR is set to 40 dB, L is set to 512, M is 
set to 30 , and initI is set to 12 .  The comparison is with 
PAPA.  Again, algorithm two has superior convergence and 
re-convergence performance to PAPA. 

 
 
 

5. CONCLUSIONS 

Basis pursuit has been shown to be an effective method of 
solving inverse problems with a small amount of data when 
the system to be determined has a sparse representation.  
Here, we use the echo cancellation context to introduce a 
method of solving the basis pursuit problem with an 
iterative method based on the PAPA.  Earlier, it was shown 
that PAPA can be derived from a basis pursuit perspective.  
Here we refined the assumptions made in those derivations 
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and showed that an iterative form of PAPA yields the same 
results as basis pursuit without resorting to the simplex 
method. The resulting algorithm has extremely fast 
convergence for adaptive filters with very sparse impulse 
responses. Simulations using the new iterative approach 
were presented. 
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Figure 1: A comparison of algorithm 1 and the simplex 
method to solve the BP problem.  Here the filter length is 
100, the sparseness is 3k , and 60M . 

 
Figure 2: A comparison of algorithm 2 and PAPA.  The 
filter length is 100, the sparseness is 3k , and 30M . 

 
Figure 4: A comparison of algorithm 2 and PAPA.  The 
echo path is that of figure 3 with an echo path length of 512 
and 30M . 

 
Figure 3: Typical network echo path impulse. 
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