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ABSTRACT

In sparse adaptive filters, the adaptation gain is “proportionately”
redistributed among all the coefficients, emphasizing the large ones
in order to speed up their convergence. The improved proportionate
affine projection algorithm (IPAPA) is a very attractive choice for
echo cancellation, since it combines the good convergence features
of the affine projection algorithm (APA) and the gain factors of the
improved proportionate normalized least-mean-square (IPNLMS)
algorithm. Similar to the APA, a matrix inversion is required within
the IPAPA. For practical reasons, the matrix needs to be regularized
before inversion, i.e., a positive constant is added to the elements of
its main diagonal. In this paper, we propose a formula for choosing
the regularization parameter of the IPAPA, aiming at attenuating the
effects of the noise in the adaptive filter estimate. Simulation results
indicate the validity of this approach in both network and acoustic
echo cancellation scenarios.

Index Terms— Echo cancellation, adaptive filters, regulariza-
tion, improved proportionate affine projection algorithm (IPAPA).

1. INTRODUCTION

The basic principle of an echo canceller is to build a model of the
echo path impulse response that has to be identified with an adaptive
filter, which provides at its output a replica of the echo (that is fur-
ther subtracted from the reference signal) [1]. The echo paths (for
both network and acoustic echo cancellation scenarios) are sparse in
nature, i.e., a small percentage of the impulse response components
have a significant magnitude while the rest are zero or small. The
sparseness character of the echo paths inspired the idea to “propor-
tionate” the algorithm behavior, i.e., to update each coefficient of the
filter independently of the others, by adjusting the adaptation step-
size in proportion to the magnitude of the estimated filter coefficient
[2]. In this manner, the adaptation gain is “proportionately” redis-
tributed among all the coefficients to emphasize the large ones in
order to speed up their convergence and, consequently, to increase
the overall convergence rate.

Many interesting proportionate-type algorithms have been pro-
posed in the last decade, e.g., see [3] and the references therein.
Among these, the improved proportionate affine projection algo-
rithm (IPAPA) [4] is one of the most attractive choice. This algo-
rithm inherits the convergence features of the affine projection algo-
rithm (APA) [5] and the robustness to the sparseness degree of the
echo path specific to the improved proportionate normalized least-
mean-square (IPNLMS) algorithm [6].
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Similar to the APA, the IPAPA requires a matrix inversion within
its update. In echo cancellation, due to the nature of the input signal
(which is mainly speech), this matrix can be very ill-conditioned.
Consequently, the matrix needs to be regularized before inversion
by adding a positive constant to the elements of its main diagonal.
In practice, it was found that the value of this regularization term
is highly influenced by the level of the system noise (the near-end
background noise), i.e., the more the noise, the larger the value of
the regularization parameter [1].

In this paper, we propose a formula for choosing the constant
regularization parameter of the IPAPA, based on a condition that in-
tuitively makes sense, i.e., to attenuate the effects of the noise in
the adaptive filter estimate. Simulations performed in the context of
both network and acoustic echo cancellation supports the theoretical
findings.

2. REGULARIZATION OF THE IPAPA

In echo cancellation, we basically deal with a system identification
problem, having the reference (or desired) signal

d(n) = hT x(n) + w(n)

= y(n) + w(n), (1)

where n is the discrete-time index,

h =
[
h0 h1 · · · hL−1

]T
is the impulse response (of length L) of the echo path, superscript T

denotes transpose of a vector or a matrix,

x(n) =
[
x(n) x(n− 1) · · · x(n− L+ 1)

]T
is a vector containing the most recent L samples of the far-end signal
x(n) (i.e., the input signal), w(n) is a zero-mean additive noise sig-
nal (i.e., the near-end background noise in the single-talk scenario),
which is independent of x(n), and the signal y(n) represents the
echo. In order to cancel this echo, the main goal is to estimate or
identify h with an adaptive filter

ĥ(n) =
[
ĥ0(n) ĥ1(n) · · · ĥL−1(n)

]T
, (2)

which updates its coefficients with an adaptive algorithm.
The IPAPA [4] is one of the most popular algorithms used for

echo cancellation. It results as a straightforward combination of the
APA [5] and the IPNLMS algorithm [6]. The IPAPA is defined by
the following equations:

e(n) = d(n)− XT (n)ĥ(n− 1), (3)

R(n) = δIP + XT (n)G(n− 1)X(n), (4)

ĥ(n) = ĥ(n− 1) + αG(n− 1)X(n)R−1(n)e(n), (5)
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where e(n) is the error signal vector of length P (with P denoting
the projection order),

d(n) =
[
d(n) d(n− 1) · · · d(n− P + 1)

]T
(6)

is a vector containing the most recent P samples of the desired sig-
nal,

X(n) =
[

x(n) x(n− 1) · · · x(n− P + 1)
]

(7)

is the input data matrix,

G(n− 1)
= diag

[
g0(n− 1) g1(n− 1) · · · gL−1(n− 1)

] (8)

is a diagonal matrix containing the proportionate (or gain) factors,
R(n) is the matrix to be inverted (of size P ×P ), δ is the regulariza-
tion parameter, IP is the P ×P identity matrix, and α is the stepsize
parameter. The proportionate factors are evaluated as [6]

gl(n− 1)

= 1−κ
2L

+ (1 + κ)
|ĥl(n−1)|

2
∑L−1

l=0
|ĥl(n−1)| , 0 ≤ l ≤ L− 1,

(9)

where κ (−1 ≤ κ < 1) is a parameter that controls the amount of
proportionality. Looking of the equations that define the IPAPA, i.e.,
(3)–(5), it can be noticed that the classical APA [5] is obtained for
G(n − 1) = IL (where IL is the L × L identity matrix), while the
IPNLMS algorithm [6] results when P = 1.

The regularization matrix δIP from (4) prevents the problems
associated with the inverse of the matrix XT (n)G(n − 1)X(n),
which can be very ill-conditioned. However, the selection of the
regularization parameter δ has a great impact in terms of the adap-
tive filter performance. If the value of δ is not chosen properly, the
IPAPA may never converge, especially under low signal-to-noise
ratio (SNR) conditions.

In this context, let us define the echo-to-noise ratio (ENR) [1] as

ENR =
σ2
y

σ2
w

, (10)

which is also the definition of the SNR, where σ2
y = E

[
y2(n)

]
and σ2

w = E
[
w2(n)

]
are the variances of y(n) and w(n), respec-

tively, with E(·) denoting the expectation. It is known from practice
that the value of the regularization parameter δ depends on the level
of the noise that corrupts the output of the system that needs to be
identified. Low ENRs require high values of the regularization pa-
rameter, while its importance becomes less apparent for high ENRs.
The main question is how large or small should be chosen the value
of δ as a function of the ENR? In order to provide an answer to this
question, let us rewrite (5) as

ĥ(n) = P(n)ĥ(n− 1) + αh̃(n), (11)

where

P(n) = IL − αG(n− 1)X(n)R−1(n)XT (n) (12)

and

h̃(n) = G(n− 1)X(n)R−1(n)d(n). (13)

Examining (11)–(13), we can see that the vector h̃(n) is the correc-
tion component of the IPAPA, since it depends on the new obser-
vation d(n). Also, it can be noticed that the matrix P(n) does not

depend on the noise signal or the desired signal, but only on the input
signal. The correction term h̃(n) is obtained by solving

min
h̃(n)

{[
d(n)− XT (n)h̃(n)

]T [
d(n)− XT (n)h̃(n)

]

+δ
∥∥h̃(n)

∥∥
1

}
, (14)

where ‖·‖1 denotes the �1 norm. In fact, the previous optimization
is the regularized version of the minimum �1-norm solution of the
linear system of P equations d(n) = XT (n)h̃(n). Since the solution

h̃(n) is not the optimal one, the other vector P(n)ĥ(n − 1) in (11)
can be seen as a good initialization of the adaptive filter.

Based on the previous considerations, we can define a new error
signal vector as

ẽ(n) = d(n)− XT (n)h̃(n). (15)

A reasonable way to attenuate the effects of the noise in the estimator
h̃(n) is to find δ by imposing the condition [7]

E
[‖ẽ(n)‖22

]
= E

[‖w(n)‖22
]
, (16)

where w(n) =
[
w(n) w(n− 1) · · · w(n− P + 1)

]T
is a

vector containing the most recent P samples of the system noise and
‖·‖2 denotes the �2 norm.

In order to develop (16), we can use (13) in (15) to get

ẽ(n) =
[
IP − XT (n)G(n− 1)X(n)R−1(n)

]
d(n). (17)

Next, let us use the eigenvalue decomposition:

XT (n)G(n− 1)X(n) = V(n)Λ(n)VT (n), (18)

where V(n) is an orthogonal matrix containing the eigenvectors of
XT (n)G(n − 1)X(n) as columns and Λ(n) is a diagonal matrix
containing the corresponding eigenvalues. Consequently, the inverse
of the matrix from (4) is

R−1(n) = V(n) [δIP +Λ(n)]−1 VT (n) (19)

and based on (17)–(19), we get

‖ẽ(n)‖22 = dT (n)V(n)

· {IP −Λ(n) [δIP +Λ(n)]−1}2 VT (n)d(n).
(20)

In order to further process (20), we need to know the eigenval-
ues of the matrix from the right-hand side of (18). Of course, these
parameters depend on the character of the input signal, but also on
the proportionate factors. Consequently, based on (9) and assuming
that the input signal is white, we get

xT (n)G(n− 1)x(n) = 1− κ

2L
xT (n)x(n)

+
1 + κ

2
∥∥∥ĥ(n− 1)

∥∥∥
1

L−1∑
l=0

x2(n− l)
∣∣∣ĥl(n− 1)

∣∣∣
≈ 1− κ

2
σ2
x +

1 + κ

2
σ2
x

≈ σ2
x,

(21)

where σ2
x = E

[
x2(n)

]
is the variance of the input signal x(n).

Hence, (20) simplifies to

‖ẽ(n)‖22 = dT (n)d(n)
(

δ

δ + σ2
x

)2

. (22)
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Therefore, taking the expectation in (22), the condition (16) becomes

E
[‖d(n)‖22

]( δ

δ + σ2
x

)2

= E
[‖w(n)‖22

]
. (23)

Since the echo signal and the system noise are uncorrelated, (23) can
be rewritten as

{
E
[‖y(n)‖22

]
+ E

[‖w(n)‖22
]}(

δ

δ + σ2
x

)2

= E
[‖w(n)‖22

]
,

(24)

where y(n) =
[
y(n) y(n− 1) · · · y(n− P + 1)

]T
con-

tains the most recent P samples of the echo signal. Finally, knowing
that E

[‖y(n)‖22
]
= Pσ2

y and E
[‖w(n)‖22

]
= Pσ2

w, and taking
(10) into account, the condition (24) becomes

(
δ

δ + σ2
x

)2

=
1

1 + ENR
, (25)

which results in the quadratic equation

δ2 − 2
σ2
x

ENR
δ −

(
σ2
x

)2
ENR

= 0. (26)

The obvious solution of the quadratic equation (26) is

δ =
1 +

√
1 + ENR

ENR
σ2
x

= βIPAPAσ
2
x, (27)

where

βIPAPA =
1 +

√
1 + ENR

ENR
(28)

is the normalized (with respect to the variance of the input signal)
regularization parameter of the IPAPA.

According to (27), the regularization parameter δ depends on the
variance of the input signal (σ2

x) and the ENR. In both network and
acoustic echo cancellation, the first parameter is known, while the
ENR could be estimated since it depends on the power of the system
noise [8]. Therefore, (28) provides a more rigorous way to choose
the normalized regularization parameter as a function of the ENR.

We can notice that the regularization does not depend on the
parameter κ. In fact, the regularization of the IPAPA is equivalent
to the regularization recently proposed for the APA [7] up to the
scaling factor L, which is due to the definition of gl(n−1) [see (9)].
Also, it can be noticed that the regularization parameter of the IPAPA
does not depend on the projection order P and is identical to the
regularization parameter of the IPNLMS algorithm when we assume
that the input signal is white [9]. In the general case, the expression
of the regularization of IPAPA is much more complicated. However,
in practice, the regularization parameter needs not to be accurate; an
approximate value gives, usually, good performances.

3. SIMULATION RESULTS

Simulations were performed in the context of echo cancellation,
since this is the main application of sparse adaptive filters. Two
echo paths were used (see Fig. 1), having different sparseness de-
gree. The first one [Fig. 1(a)] is a network echo path from G168
Recommendation [10]; its impulse response can be considered to
be very sparse. The second one [Fig. 1(b)] is a measured acoustic
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Fig. 1. Impulse responses used in simulations. (a) Network echo
path (G168). (b) Acoustic echo path.

echo path, which is less sparse. Both impulse responses have 512
coefficients, using a sampling rate of 8 kHz. All adaptive filters used
in the experiments have the same length, i.e., L = 512.

The far-end signal (i.e., the input signal) is a speech sequence.
The output of the echo path is corrupted by an independent white
Gaussian noise (i.e., the background noise at the near-end) with dif-
ferent ENRs, i.e., 30 dB, 10 dB, and 0 dB. All the simulations are
performed in the absence of the near-end talker (i.e., the single-talk
case). In order to evaluate the tracking capabilities of the algorithms,
an echo path change scenario is simulated in all the experiments, by
shifting the impulse response to the right by 12 samples. The per-
formance measure is the normalized misalignment (in dB), which is

defined as 20log10

[∥∥∥h − ĥ(n)
∥∥∥
2
/ ‖h‖2

]
.

We choose to compare the APA with the IPAPA, both using two
types of regularization. The first type is the “classical” choice δ =
βσ2

x, where β is the normalized regularization parameter. In many
simulation scenarios, a frequently used value for this parameter is
β = 20 in the case of APA [1], [3]; equivalent, it was intuitively
shown in [6] that this corresponds to β = (1 − κ)20/(2L) in the
case of IPAPA. The second type of regularization is the “optimal”
one, which was recently proposed in [7] for the APA [i.e., βAPA =
L(1 +

√
1 + ENR)/ENR] and is given in (28) for the IPAPA (i.e.,

βIPAPA). For all the algorithms, the stepsize parameter is set to α =
0.2 and the projection order is P = 2. The proportionality parameter
of IPAPA is chosen as κ = 0.

Figure 2 presents the misalignment of the algorithms when
ENR = 30 dB. First, it is clear that the IPAPA outperforms APA for
both echo paths, which is an expectable result; of course, the gain is
more apparent for the network impulse response [Fig. 2(a)], which
is very sparse. Second, we can notice that the performance obtained
with the “classical” regularization [i.e., β = 20 for the APA and
β = (1 − κ)20/(2L) ≈ 0.02 for the IPAPA] are very similar with
the “optimal” case (i.e., βAPA and βIPAPA, respectively). This is
also expected, because if we consider L = 512 and ENR = 30 dB,
we easily get βAPA ≈ 16.7 and βIPAPA ≈ 0.03, which are very
close to the “classical” values.

However, the importance of the regularization parameter be-
comes more apparent in noisy environments. The previous exper-
iment is repeated in Fig. 3 but using ENR = 10 dB. According to
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Fig. 2. Misalignment of the APA and IPAPA using different values
of the normalized regularization parameter, corresponding to (a) the
network echo path from Fig. 1(a) and (b) the acoustic echo path from
Fig. 1(b). The echo path changes at time 5 seconds. The input signal
is speech, L = 512, P = 2, α = 0.2, κ = 0, and ENR = 30 dB.
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Fig. 3. Misalignment of the APA and IPAPA using different values
of the normalized regularization parameter, corresponding to (a) the
network echo path from Fig. 1(a) and (b) the acoustic echo path from
Fig. 1(b). ENR = 10 dB; other conditions as in Fig. 2.

these results, it is clear that the IPAPA using βIPAPA outperforms by
far the other algorithms. In this case, a much higher value of the nor-
malized regularization constant is required; according to (28), this
value is βIPAPA ≈ 0.43, which is much higher as compared to the
“classical” choice for IPAPA, i.e., β ≈ 0.02.

Finally, in Fig. 4 the value of the ENR is set to 0 dB. It can be
noticed that the regularization process is critical in this case. For an
improper value of the normalized regularization constant the mis-
alignment of the adaptive filter fluctuates much and never converges.
It is clear that the IPAPA using βIPAPA (≈ 2.43 in this case) per-
forms much better in this scenario. The advantage of the proper
regularization is also clearly visible in the case of the APA, even if
this algorithm converges slower as compared to the IPAPA.
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Fig. 4. Misalignment of the APA and IPAPA using different values
of the normalized regularization parameter, corresponding to (a) the
network echo path from Fig. 1(a) and (b) the acoustic echo path from
Fig. 1(b). ENR = 0 dB; other conditions as in Fig. 2.

4. CONCLUSIONS

In this paper, we have proposed a more rigorous way to choose the
regularization parameter of the IPAPA as a function of the ENR. The
basic condition was to attenuate the effects of the system noise in
the adaptive filter estimate. Simulations performed in the context
of both network and acoustic echo cancellation prove the validity of
this approach in different noisy environments.
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