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ABSTRACT 

 
Acoustic echo cancellation is one of the oldest applications 
of adaptive filters and today is a part of each speakerphone. 
An important block of each acoustic echo canceller is the 
double talk detector. It blocks the adaptation of the filter 
when near end voice is present and thus preventing the 
adaptive filter from diverging from the optimal position. In 
this paper we present an improved version of coherence 
based double talk detector. It provides estimation of the 
double talk presence probability per bin and per frame and 
has better precision compared to the baseline algorithm.  
 

Index Terms — Acoustic echo cancellation, double talk 
detector, coherence  

1. INTRODUCTION 

Acoustic echo cancellers (AEC) [1] are designed to remove 
the captured loudspeaker signal from the microphone chan-
nel of a speakerphone or another telecommunication device. 
The AEC consists of an adaptive filter, which estimates the 
transfer function between the loudspeaker channel and the 
microphone channel, convolves the loudspeaker signal with 
this transfer function, and subtracts it from the microphone 
channel. Under absence of near end speech the adaptive 
filter converges to the closest estimation of the transfer 
function. The precision of this convergence depends on the 
noise in the microphone channel. When we have local 
speech the adaptive filter diverges from this optimal posi-
tion. The purpose of the double talk detector (DTD) is to 
detect the segments of local speech and block the adaptation 
of the acoustic echo canceller. 

The generic DTD computes a certain statistical parame-
ter , preferably data independent, which is compared with 
a threshold . If the value is higher than the threshold, dou-
ble talk is detected, if it is below – there is no double talk. 
The threshold value can be adjusted using the receiver oper-
ating characteristics (ROC) curves to provide maximum 
performance. A good overview for DTD evaluation criteria 
is given in [2]. One of the first DTD algorithms is the Geigel 
algorithm, which evaluates the proportion of the largest 
magnitude of the microphone signal for a given time inter-
val and the magnitude of the loudspeaker signal. The opti-
mal threshold is highly variable and the reliability of the 

DTD is low. Cross-correlation based algorithms are consid-
ered more robust and reliable. The problem with this class 
of algorithms is that the cross-correlation function is not 
very well normalized and it is not quite robust when noise is 
present. A DTD algorithm using the normalized cross-
correlation function is derived in [3]. While more precise it 
is computationally expensive, which led to publishing a 
faster version of it [4] based on tracking with a Kalman fil-
ter. While substantially faster this algorithm is still computa-
tionally expensive. Instead of using the cross-correlation 
function as a statistical variable, the coherence function can 
be used [5]. The coherence function between the loudspeak-
er and microphone channels is easy to compute and is well 
normalized. Values close to one mean that microphone and 
loudspeaker signals are coherent and there is no local 
speech. Under presence of local speech the value of the co-
herence function decreases and approaches zero, which 
makes it a good statistical parameter for DTD. Unfortunate-
ly the coherence function value decreases under the pres-
ence of noise or strong reverberation, which makes this 
method less suitable for cases when the microphone is away 
from the loudspeaker and/or high levels of noise are present.  

In this paper we present a modified version of the co-
herence based DTD. We build statistical models of the co-
herence function distribution, a classifier, and use first order 
HMM filter for smoothing. The new algorithm is more ro-
bust to noise and reverberation. It was evaluated against a 
data corpus with wide range of noise levels and compared 
with the original version of the algorithm. The proposed 
approach improves the precision of the DTD more than two 
times compared to the original version of the algorithm.  

2. MODELING 

A schematic diagram of an AEC is shown in Figure 1. The 
far end signal z t  is sent to the loudspeaker. The micro-
phone captures this signal convolved with the impulse re-
sponse of the transfer function speaker-microphone h t . It 

captures the near end voice s t  and noise n t . The trans-
fer function near end speaker-microphone is omitted for 
simplicity. The microphone signal is: 
 *x t z t h t s t n t . (1) 
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The acoustic echo canceller estimates the transfer path loud-
speaker-microphone ĥ t  and subtracts the estimated por-
tion of the loudspeaker signal from the microphone signal. 
At the acoustic echo canceller output we have: 
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z t h t z t h t s t n t
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In this paper we consider processing in frequency domain 
where the convolution converts to multiplication and we 
have: 
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Here k  is the frequency bin and n  is the frame number. 
The modeling described so far assumes that the audio frame 
is longer than the reverberation process, which is incorpo-
rated in h t , and we model it with a one tap filter. This is 
not the case with real systems with typical frame duration of 
10-30 ms and reverberation times of 200-400 ms. To ac-
commodate the longer impulse response the acoustic echo 
canceller uses an FIR filter with multiple taps for each fre-
quency bin. This converts equation (3) to: 

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0
1

( ) ( ) ( ) ( ) ( )

0

ˆ

ˆ      ,

L L
n n l n l n l n l n n n

k k k k k k k k
l l

L
n l n l n l n n

k k k k k
l

Y Z H Z H Z S N

Z H H S N
 (4) 

where L  is the number of taps in the FIR filter. Denoting: 
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the equation (4) can be rewritten in vector form: 
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The squared magnitude of the coherence function between 
( )nZ  and ( )nX for the frequency bin k  is: 

 
2

2 ( )
( )

( ) ( )
ZX

ZX
ZZ XX

S k
k

S k S k

(ZXS (ZX

S ( ))
, (7) 

where H
ABS ABHAB  are the spectral densities. Then the statis-

tical parameter ( )n  for the entire frame can be computed as 

a weighted sum ( ) 2 ( ) Tn n
ZXW γ . Typically the 

weighting vector W  is a band-pass filter and the statistical 
parameter is computed as a partial sum: 
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Then the statistical parameter is compared to a threshold  
to make the final decision: 
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Here  introduces a small hysteresis to prevent “ringing” 

in the slopes. If nD  is 1 we have double talk detected in 
this frame, if zero – no double talk was detected.  

3. PROPOSED ALGORITHM 

The main problem with the algorithm above is that the sta-
tistical parameter 0,1n  goes to one only in close to 
perfect conditions: no noise and reverberation. When noise 
is added to the microphone signal the value of n  is higher 
than when a double talk is present, but doesn’t go to one and 
varies based on the noise and reverberation levels. This 
makes the optimal threshold  for one input SNR subopti-
mal for another. In low SNRs the DTD stops to work at all. 
When a loudspeaker signal is present, two hypotheses can 
be considered for the current frame and bin: 
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We model the distribution of the statistical parameter 
( ) 2 ( )n
k ZX k as Gaussian in both cases: 
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Here , , ,  and N N D D  are the means and variances of the 
statistical parameter without and with double talk. Then 
given value of the statistical parameter k , after applying 
the Bayesian rule, the probability to have double talk is: 

 
Figure 1. Schematic diagram of acoustic echo 

 canceller. 
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Here 1kP H  and 0 11k kP H P H  are the prior proba-
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hood ratio. The frame indexes are omitted for simplicity.  
The estimation so far was based on the assumption of 

statistically independent consecutive audio frames, which in 
the case of speech and music is not quite correct. To express 
this property explicitly, we model the sequence of frame 
states as a first-order Markov process. The full derivation is 
presented in [6] and the smoothed likelihood ( )ˆ n

k  is: 
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Here 01a  and 10a  are the prior probabilities for changing the 
state,  00 011a a  and 11 101a a  are the prior probabili-
ties to stay in the same state. In general this is a smoothing 
filter, lower are the priors for change – higher is the smooth-
ing. After substituting ( )ˆ n

k  in (13) the prior probabilities 
cancel nicely and for the probability for double talk in given 
bin and frame we have: 
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There are two main ways to combine the likelihoods 
from all frequency bins to estimate the likelihood for the 
entire frame. The first is the geometric mean, also known as 
the log-likelihood ratio test: 
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The second is the arithmetic mean: 
( ) ( )1 .n n
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The first expects that all frequency bins should have double 
talk to trigger double talk for the entire frame; the second 
can have high likelihood even if just a few frequency bins 
have double talk. The reality is somewhere in between: the 
speech signal is quite sparse, so (16) will not work well; on 
the other hand (17) is less robust to noise. We compute the 
likelihood ratio for the entire frame as a weighted sum of the 
geometric and arithmetic means: 

( ) ( ) ( )1 ,n n n
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      (18) 
hoping that with a properly selected value of the coefficient 

 we can combine the advantages of both approaches.  
Using the same methodology as above we derive the 

smoothing filter and the probability for double talk for the 
entire frame: 
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Here 01b  and 10b  are the prior probabilities for changing the 
frame state,  00 011b b  and 11 101b b  are the prior prob-
abilities to stay in the same frame state. The soft decision in 
(19) can be converted to a binary decision by comparing 
with a threshold according to equation (9).  

Once we have estimated the probabilities for double 
talk for each frequency bin and for the entire frame we can 
update the estimates for the means and variances: 
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Here T  is the audio frame duration, N  and D  are the ad-
aptation time constants. The adaptation speed also depends 
on the double talk probabilities.  

4. EXPERIMENTAL RESULTS 

The proposed algorithm was evaluated and compared with 
the baseline algorithm using a data corpus containing two 
noise levels (40 and 50 dBC SPL, automotive noise), two 
levels of the near end and far end signals (54 and 60 dBC 
SPL at 1 meter), played by two high quality loudspeakers in 
normal office reverberation conditions 60 230 msRT . 
The loudspeakers and the microphone formed a triangle 
with sides of one meter each. All combinations of the noise, 
near, and far end signal levels produced eight recordings. 
Training and testing sets with all of the combinations were 
recorded separately. The near and far end signals were hu-
man speech, ten sentences each, equally mixed male and 
female voices, with pauses between them shifted in a way to 
produce partial and full overlap, i.e. double talk. The ground 
truth was established by running the clean near and far end 
speech signals trough a precise voice activity detector [7]. 
The binary decision “speech/no speech” for the two signals 
was compared and double talk marked for the frames where 
both VAD indicated speech activity.  

The classification error was selected as the evaluation 
parameter, defined as: 

 .100%.FP FN

Tot

N N
N

 (22) 

Here NFP is the number of false positives, NFN is the number 
of false negatives, and NTot is the total number of frames.  
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The sampling rate was 16 kHz, we used 512 samples 

per audio frame, and the overlap and add process was as 
described in [8] with 50% overlapping and Hann weight 
window. As the duration of the audio frame was 16 ms we 
used a ten taps filters for each frequency bin, i.e. L=10. 

With the training set an optimization was conducted to 
minimize the error rate by varying the values of the DTD 
parameters, using the same approach as described in [7]. 
The vector of the optimization parameters is: 

01 10 01 10, , , , , , , , ,beg end N Df f a a b bV .     (23) 

Here begf  and endf  are the beginning and ending frequen-
cies to process in equations (8), (16), and (17) rounded to 
the closest frequency bins begK  and endK . As optimization 
criterion we selected to minimize the classification error 
after the binary decision, which is a function of the optimi-
zation parameters. Then: 

arg minOPTV V .        (24) 

The optimal values of these parameters are shown in Ta-
ble 1. Note the relatively high value of begf  – the optimiza-
tion program lifted it because of the high energy of the au-
tomotive noise in the lower part of the frequency band. For 
the baseline algorithm the optimal threshold value was de-
termined to be 0.960 after a similar optimization. 
      All further results were obtained against the testing set 
of recordings, which the optimization procedure hasn’t used. 
The results for the baseline and proposed algorithms are 
shown in Table 2, the ROC curves – in Figure 2. 

  

5. CONCLUSIONS AND FUTURE WORK 

The proposed algorithm has a lower error rate and is sub-
stantially better in reducing the false negatives, preventing 
AEC from diverging during the double talk situations. 

The proposed DTD algorithm provides estimation of 
DTD probability for each frequency bin separately. This 
makes possible controlling the AEC adaptation speed for 
each frequency bin separately based on DTD probability. 
This will keep the adaptation on for the frequency bins 
without double talk and improve the AEC parameters con-
sidering the sparse nature of the speech signal.  
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Table 2. Results, baseline and proposed algorithms 
Algorithm Error NFP NFN Ttot 
Baseline 2.94% 575 511 36920 
Proposed 1.26% 251 214 36920 

Table 1. Optimal values of the DTD parameters 
Parameter Value Unit 
 fbeg 853.33 Hz 
 fend 6090.00 Hz 
 a01 0.0000123   
 a10 0.0000433   
 β 0.285   
 b01 0.0000010   
 b10 0.0000035   
 η 0.95   
 τN 4.33 sec 
 τD 10.00 sec 

 
Figure 2. ROC curves 
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