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ABSTRACT

Parsing complex acoustic scenes involves an intricate inter-

play between bottom-up, stimulus-driven salient elements in

the scene with top-down, goal-directed, mechanisms that shift

our attention to particular parts of the scene. Here, we present

a framework for exploring the interaction between these two

processes in a simulated cocktail party setting. The model

shows improved digit recognition in a multi-talker environ-

ment with a goal of tracking the source uttering the highest

value. This work highlights the relevance of both data-driven

and goal-driven processes in tackling real multi-talker, multi-

source sound analysis.

Index Terms— Attention, Saliency, Auditory Scene

Analysis, Cognition, Digit Recognition

1. INTRODUCTION

This paper describes a model of attention-driven auditory

scene analysis (ASA). ASA is the process of listening to a

complicated auditory environment, a cocktail party is the

canonical example, and being able to select and understand

a single talker. Due to its significance in both perceptual

and engineering sciences, interest in tackling the ASA phe-

nomenon has prompted multidisciplinary efforts spanning

the engineering, artificial intelligence and neuroscience com-

munities. In general, most current work on auditory scene

analysis takes one of two simplified approaches. The first

approaches to computational auditory scene analysis (CASA)

use an exclusively bottom-up approach. Low-level percep-

tual signals are grouped using simple rules such as common

onsets or modulations [1]. These systems rely heavily on the

conspicuity and salience of stimulus elements; and perform

reasonably well in simple and well controlled scene analysis

conditions. More recent systems take a more sophisticated

approach by including expectations in the analysis. These

systems have simple models of what a talker sounds like [2],

or what was said before [3]. In this paper we describe a third

approach based on a user’s goals.

We are interested in saliency and attention because of the

interplay between bottom-up and top-down processes. We de-

fine saliency to be a bottom-up signal that tells the brain that

Fig. 1. The goal of the attention-driven scene analysis system

is to recognize the highest value sound.

something novel or interesting has happened. Its role is to

alert the subject, perhaps shifting the focus of attention. Top-

down attention, on the other hand, is a goal-directed signal

based on the desires, needs, and limitations of the animal.

The role of attention in auditory scene analysis is unset-

tled. It is certainly true that attention can affect stream seg-

regation. For instance, the ability to switch at will between

hearing certain tone sequences as one or two streams can be

thought of as an effect of attention, but that leaves the ques-

tion of whether attention is necessary for streaming (e.g., [4]).

The bulk of the literature suggests that at least some forms of

streaming occur in the absence of top-down attention, in what

is termed “primitive” stream segregation [5], and bottom-up

saliency may play a role here. Streaming may also be thought

of as a process that facilitates attention (rather than only vice

versa) in that it only becomes possible to pay exclusive at-

tention to tones of a single frequency if they are successfully

segregated from other tones in the sequence. In the case of al-

ternating tone sequences, van Noorden [6] defines two bound-

aries, the fission boundary and the temporal coherence bound-

ary. The fission boundary defines the frequency difference (or

other dimension) below which segregation is not possible; the

temporal coherence boundary defines the point above which

integration is not possible. The area in between these two

boundaries could be the region in which attention plays a role

in determining whether we hear one or two streams. These

kinds of models have also been studied in vision [7].

We postulate that attention has two purposes: selection

and efficiency. We want to attend to a single talker because

he is telling us something that we need to know—this is selec-

tion. Furthermore, attention is important because our brains

have limited computational ability and (ignoring divided at-
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tention) we can only process the speech from one talker at a

time. We are not arguing, however, that computers should be

limited in the same way. It might be desirable to use a com-

puter to simultaneously separate and decode all talkers [8].

But it is important to note the different approaches.

This paper describes in Section 2 our theory for attention-

driven auditory scene analysis. Section 3 describes the model

we built and we describe its performance in Section 4. As this

is an initial attempt to build a model of attention and saliency,

we emphasize open questions in Section 5.

2. THEORY AND MODEL

In everyday acoustic scenes, some sounds are important, but

most are not. In general the information content of a signal

is hard to judge. There are many different factors, most of

which we can’t hope to understand or model. Here, we pos-

tulate a goal of an organism is to select and understand the

highest-value audio in a complex auditory environment. Fig-

ure 1 describes a simple scenario explored in this study. Here

a subject listens to speech signals from two different talkers,

a male and a female at different positions. Our goal is not to

model the semantic content in natural language, but rather to

explore the role of bottom-up saliency and top-down goals in

mediating scene analysis. Our talkers utter simple two-digit

numeric “sentences” that have a direct semantic meaning (98,

the higher value, is more important than 32). Our goal is to

separate and understand the highest value sentence over time.

We use saliency to tell us when something interesting is hap-

pening, perhaps new sound from a different talker. It is up to

a “cognitive” layer to decide, based on expectations, whether

we should shift our attention to this new signal.

In our simulated cocktail party a male and a female talker

speak two-digit sentences. The ten possible words from

each talker were drawn from the TIMIT database and do

not change during the experiment. Each sentence ends with

an even digit so that we can more easily parse the sentence

structure. The two streams of digits overlap approximately

59% of the time. Played binaurally, human subjects with

native English skills can attend to either talker and perfectly

understand either talker, albeit with some difficulty. Played

monaurally, the task is very difficult, if not impossible.

In this paper we demonstrate an attention-driven model

and measure its performance using several different cognitive

strategies. One simple strategy is to always pay attention to

a single talker. A second possibility is to always shift atten-

tion to the new talker whenever a salient event occurs—we

call this the distracted model. Finally, the best approach we

describe is a “smart” approach which looks at the speech re-

ceived so far, and then judges whether the new talker is likely

to be more valuable, by virtue of giving us a higher-value sen-

tence.

Fig. 2. A block diagram of the attention-driven scene analysis

system.

3. IMPLEMENTATION

We built the system shown in Fig. 2. It has five primary

components: saliency, cognition, attention, separation and

recognition. The system is fully developed, although there

are many simplifications, because we want to emphasize the

attention/saliency tradeoff in CASA.

Saliency is defined as something that is noticeable or im-

portant. There are models of auditory saliency [9, 10] but they

are largely straightforward transformations of visual saliency

models to audition. The visual saliency models have been

successful because they have been validated with eye-tracking

data, which is a good indication of attention. Unfortunately,

there is no similar indication of auditory attention. While

the auditory salience models have been validated with simple

sounds (tones or speech) neither was sufficient for the two-

talker situation we are testing. Thus we implemented a very

simple model of binaural saliency.

Our binaural saliency model is based on a VLSI spike-

based implementation of cochlear interaural-time delay (ITD)

processing [11]. We play the male and female speech through

two different speakers separated by 53 cm. The baseline of

the cochlear board’s two microphones is 25.5cm. from the

speaker baseline, giving a 90 degree difference between the

two talkers. We analyze the sound from each analog-digital

VLSI cochlea into 64 bandpass channels. Neural spikes for

each channel, c, and from each ear are generated by the VLSI

system and sent to a computer for analysis. These spikes are

cross-correlated and summed across channels, in software, as

a function of relative time delay over time, t, to obtain the

ITD signal, R(τ, t). This ITD signal tells us from which di-

rections we are receiving sound energy. We turn this into a

binaural saliency signal by taking the temporal derivative of

the cross-correlation: S(τ, t) = ∂R(τ, t)/∂t. Peaks in this

saliency signal represent binaural onsets, which is a simple

representation of salience.

Results from our binaural salience model are shown in the

three images of Fig. 3. The top image shows the ITD signal

for 16 different directions (or time delays) over time. There
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Fig. 3. ITD signals, salience and digit recognition results for one 20-second trial using the “smart” cognition model. Each bar

in the bottom graph shows the last recognized digit; the start of the bar represents the end of the spoken digit.

is significant overlap between the talkers. The middle plot

shows the output of the binaural saliency model, for just the

two most prominent ITD channels. Note there is a salience

peak at the start of each digit. Finally the bottom plot summa-

rizes the recognition and attention results from a single trial.

Cognition is a difficult thing to model. As we are only

interested in the tradeoff between saliency and attention, we

used simple cognitive models to illustrate the concepts. Thus

we measured the performance of single-talker, distracted, and

smart approaches. Our “smart” approach is still relatively

simple. If the sentence received so far is likely to be a low

value, we switch as soon as a salient event happens in the

opposite channel. This judgement is based on the digits rec-

ognized so far. If the first digit of the current sentence is five

or higher we make the bet that the sentence from the current

talker is likely to be good and we want to keep our attention

on the current talker. Conversely, if we have not received any-

thing or we have only recognized a low digit at the start of the

sentence we make a bet and switch.

Our top-down attention model is simple. We attend to

only one talker at a time, either the male on the left, or the

female on the right. Humans have some ability to divide their

attention, although dual task experiments often show there are

bottlenecks that limit overall performance. In this study we do

not attempt to model divided attention. Our subject listens to

one talker until told to switch to the other.

Our original goal was to use the ITD signal to select the

active binaural channels and then use simple beam forming to

select the appropriate audio. Unfortunately this approach is

only going to give us at best a 3 dB advantage, when the two

signals are constructively added. Thus in this paper we bypass

this problem by feeding the recognition stage directly with

either the left or the right audio signal and the recognition

system gets perfect audio on which to perform its actions.

Our speech recognition system is based on speaker- and

digit-dependent template matching. An audio signal from the

separation system is analyzed with MFCC and stored. At each

frame (100 Hz) we measure the Euclidean distance between

the most recently calculated MFCC coefficients and precom-

puted models of each talker’s digits. We recognize a digit

when the error (normalized by the length of the target utter-

ance) is lower than a threshold. Recognition of either talker,

under these idealized circumstances, is perfect, except when

the attention switches in the middle of a digit.

4. TESTING

We tested our system with 200 trials, each trial consisting of

20 two-digit sentences from two overlapping talkers. The pri-

mary task was to correctly identify the highest (numerically)

valued sentence. We measured both the speech-recognition

error rate, and whether the subject got the right answer in our

cognitive test.

A sentence is recognized only if the constituent digits are

correctly recognized. Given the received sentences it is easy

to pick the highest value. Human subjects reported that they

could often recognize the highest values but could not recall

who said it. We, thus, ignored the gender of the talker in

scoring our tests.

Figure 4 shows our recognition results for several dif-

ferent variations of our experiment. The distracted result is

lowest because the attention model switches immediately as
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Fig. 4. Recognition results for five different cognitive mod-

els. We show the rate at which the highest-value sentenced is

identified correctly.

soon as there is a salient event in the unattended direction—

the recognition system almost never sees an entire sentence.

The smart model works much better because once it has rec-

ognized a big digit at the start of the sentence it continues to

attend to that direction. The two “smart” alternatives shown in

the figure represent variations where we only allow switches

to occur after the indicated number of seconds. Thus “Smart

0.5” switches the attentional focus only after at least 0.5 sec-

onds. Finally, the best results are for the single-channel atten-

tion model—always pay attention to one speaker. This high

result is an artifact of our experimental paradigm. Since there

is a very restricted vocabulary, the same high-valued sentence

is often spoken by both talkers. With a larger range of possi-

ble numbers the best the single-channel model should achieve

is 50% accuracy.

5. FUTURE WORK

Our goal is not to show that our brain model is smarter than

yours (it might be :-) but instead to describe the features of a

model of auditory scene analysis based on saliency and atten-

tion. Doing this work we found several scientific areas where

more study is needed, and thus our model has shortcomings.

Most importantly, the salience of real-world sounds is dif-

ficult to measure and model. Kayser’s model [9] picks out

single tones well, but our audio environment is much more

complicated, including, for example, multiple harmonics in a

pitched voice. Kalinli’s model includes pitch but is primarily

tested by measuring stress in spoken English sentences [10].

The binaural model used here is largely an onset detector, and

not nearly as sophisticated as we would like. None of the

models we know of allow higher levels of the brain to specify

which sounds should be considered most salient.

Separation remains an unsolved problem. We were struck

at the difficulty of recognizing the speech when the chan-

nels were summed and we tried to listen monaurally to either

talker. Furthermore, simple beam forming based on delay and

add with the two ear signals was not sufficient. The human

auditory system has an amazing ability to understand speech

sounds with different directions of arrival.

Perhaps the biggest unknown in our model is how saliency

and attention really interact. We chose a simple model to il-

lustrate the concept, but clearly humans use a much more so-

phisticated mechanism. A list of effects that remain to model

includes: divided attention, perhaps based on selective listen-

ing; the tradeoff between saliency and attention; expectations

that some signals are more likely to be informative; historical

information; and the role of visual signals in the saliency and

understanding of a cocktail party.
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