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ABSTRACT

This paper proposes model-based non-negative matrix factorization
(NMF) for estimating basis spectra and activations, detecting note
onsets and offsets, and determining beat locations, simultaneously.
Multipitch analysis is a process of detecting the pitch and onset
of each note from a musical signal. Conventional NMF-based ap-
proaches often lead to unsatisfactory results very possibly due to the
lack of musically meaningful constraints. As music is highly struc-
tured in terms of the temporal regularity underlying the onset occur-
rences of notes, we use this rhythmic structure to constrain NMF by
parametrically modeling each note activation with a Gaussian mix-
ture and derive an algorithm for iteratively updating model parame-
ters. It is experimentally shown that the proposed model outperforms
the standard NMF algorithms as regards onset detection rate.

Index Terms— Polyphonic pitch transcription, Non-negative
matrix factorization, Rhythmic/Beat structure, Onset detection

1. INTRODUCTION

Music transcription is a process of obtaining a symbolic representa-
tion (such as a set of MIDI messages or a score) of an audio signal.
While there are a number of viable solutions for transcribing mono-
phonic music, polyphonic music still poses a formidable challenge.

Most existing methods for polyphonic pitch transcription rely
on prior knowledge about the sources contained in the polyphonic
data being analyzed. The main weakness of these kinds of methods
is that they lack the capacity to adapt to signals that do not comply
with the assumption they make about the sources. On the other hand,
relatively recent techniques based on sparse representations use as
few hypotheses as possible about the audio content to separate the
notes. The goal of this kind of approach is to find a set of basis spec-
tra such that any observed spectrum can be concisely represented
as a linear combination of a small number of ‘active’ basis spectra.
One successful approach involves applying the Non-negative Ma-
trix Factorization (NMF) to a power spectrogram (a time-frequency
representation) interpreted as a non-negative matrix [1]. In this ap-
proach, a spectrogram Y is factorized into a product of two factors
with non-negative entries, one being a basis matrix H, consisting
of basis spectra, and the other an activation matrix U, consisting of
time-varying amplitudes associated with the basis spectra.

One way of obtaining a symbolic representation from a poly-
phonic audio signal is to apply NMF to its spectrogram and then
perform onset/offset detection in the activations associated with the
basis spectra [2]. This transcription method is based on the assump-
tion that each basis spectrum obtained with NMF corresponds to a
single pitch. We should thus be able to determine note onsets and
offsets by simply thresholding the lines of the activation matrix U.
In practice, however, the lack of constraints in the NMF model often
leads to unsatisfactory results. One reason is that the envelope of
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each basis activation typically contains many noisy peaks and dips
due to the mismatch between the actual source spectra and the ba-
sis spectra. These kinds of errors occurring in the NMF phase will
propagate through to the onset/offset detection phase, thus making
it difficult to reach correct decisions. To obtain the basis activity in-
formation with as few errors as possible, it is necessary to incorpo-
rate an appropriate constraint into the NMF model. Many attempts
have already been made to develop constrained variants of the NMF
model: “Sparse NMF” promotes the sparsity of the basis activations
while performing decomposition [3]. “Non-negative matrix factor
deconvolution (NMFD)” [4] and “non-negative matrix factor 2D de-
convolution (NMF2D)” [5] use spectro-temporal signatures rather
than the basis spectra to represent spectrograms. “Smooth NMF”
enforces temporal continuity on the basis activations [6]. “Harmonic
NMF” imposes harmonicity constraints on the basis spectra [7]. The
“Non-negative hidden Markov model” uses Markov-chained basis
spectra to represent time-varying patterns in spectrograms [8—11].

In our view, transcription methods that consist of performing
NMEF or one of its variants mentioned above for the preprocessing,
and then performing onset/offset detection for the postprocessing
will at a certain point face limitations in terms of pitch transcription
performance. This is because the estimation of basis activations and
the detection of note onsets and offsets are each a prerequisite of the
other. If we were able to obtain the correct basis activations, then it
would be a relatively simple matter to detect the onsets and offsets of
the underlying notes. On the other hand, if we were provided with
the onsets and offsets of the notes, they could constitute very use-
ful information for estimating the basis activations. Therefore, this
leads to a “chicken and egg” situation. Furthermore, as the onsets
of notes are governed by the rhythmic structure of a piece of music,
the “chicken and egg” situation also applies to the detection of note
onsets and the determination of beat locations. If we knew the beat
locations of a piece of music, then it would be much easier to detect
note onsets from the basis activations, and vice versa. Because on
this, we consider it necessary to introduce a unified model for mul-
tipitch analysis, which could be used to jointly solve the problems
of determining the basis spectra and activations, detecting the note
onsets and offsets, and determining the beat locations.

2. PROPOSED MODEL

2.1. Non-negative Matrix Factorization model
Let us start our discussion with the standard NMF model

K
Xop =Y HorUps, o)
k=1

where k is the index of each basis spectrum, w and ¢ are fre-
quency and time indices, respectively. The set consisting of
Hij,...,Hq,y represents the k-th basis spectrum and Uy is
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Fig. 1. An illustration of the parametric activation model, Vi n ¢,
consisting of M = 7 Gaussians (top) and along with the beat loca-
tions (bottom). The vertical dashed lines and the dotted lines repre-
sent multiples and fractions of the beat periods.

the activity of the k-th basis spectrum at time ¢. Given an ob-
served spectrogram Y = (Y., ¢)axr, the goal of NMF is to find
H = (H,p)axkx € RZOPK and U = (Up ) gxr € REGEXT
such that Y ~ X where X = (X,.+)o,r = HU. We assume

> Hop=1 (k=1,...,K), )

in order to avoid an indeterminacy in the scaling of H and U.

2.2. Explicit beat structure constraint
Music is highly structured in terms of the temporal regularity under-
lying the onset occurrences of notes. In general, the time between
consecutive onsets corresponds to multiples and fractions of the beat
period, with small deviations in timing and tempo.

Based on the rhythmic structure of music, we make the follow-
ing assumptions to constrain the activity function Uy, ;:

1. Each activity function consists of local activity patterns,

called “objects”, each of which we expect to correspond to a

single note activation.

Each object is characterized by a fast/slow rise at the onset

time followed by a continuous contour.

. The onset of each object is likely to be located at multiples or
fractions of the beat period.

4. The beat period varies gradually over time.

First, from assumption 1, Uy ; can be expressed as

Ny
Ukt =Y Vint, 3)
n=1

where V}, .+ denotes the n-th object and Ny, is the number of objects
in the k-th activity function. To incorporate assumption 2 into Vi » ¢,
we introduce a parametric model from [12], which is expressed as a
sum of Gaussians (Fig. 1):

M
Vk,n,t = § Gk,n,m,t7

C))
m=1
_ Yk nWkinm —(t—(m—1)¢k n—Tk,n)>/2¢7
Gk,n,m,t = —F— € ’ ] k’n’ (5)
V2T Ok
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where vy, is the total energy of object n, and 7y, is the center of the
first Gaussian, which can be considered an estimate of the onset time.
The centers of the Gaussians are constrained to be equally spaced
with the distance ¢y, which is equal to the “standard deviation” of
all the Gaussians. This specific constraint allows the entire object to
be stretched or shrunk linearly in the time direction according to the
value of ¢y, . Thus, ¢, can be regarded as a parameter related to
the duration of a note. Wk n.1,..., Wk n,nm are weights associated
with the M Gaussians, which determine the shape of the object. To
avoid an indeterminacy in the scaling of vy, and wg, n,m, We assume

M
vk,n . g Wk,n,m = 1.
m=1

Now, recall that our goal is to achieve Y ~ X. We thus
need to define a discrepancy measure between these two quantities.
Let D(y||z) be a discrepancy measure between y and x such that
D(yllz) > 0 and D(y|lz) = 0 only if y = x. We can then define
a goodness-of-fit measure between the observed spectrogram Y and
the current NMF model X

6

TYNX) =Y D(YorlXor)- ™
w,t

As in [13], we choose to use the I-divergence as the distortion mea-
sure D(yl|z)

D(ylle) = ylog £ — (y - ). ®)

Minimizing 7 (Y| X') with respect to X is then known to be equiv-
alent to maximizing the Poisson likelihood. The likelihood of the
unknown parameters, H, v, w, T, ¢, given Y is therefore

p(Y‘H, v,w,T, d)) = H POiSSOD(Yw,t; Xw,t),

w,t

(C))

where Poisson(y; x) = xve™ " /yl.

To avoid overfitting the shape of each object, we place a
Dirichlet prior over Wi, = {Wk,n,m f1<m<m, namely p(w)
[1,,, Dirichlet(wg,,; e), where Dirichlet(y; =) oc []; yrit!

K3

and o = (au,...,an). am/ Y, aM,_, is the expected value
of wg.n,m. To enforce the sparseness of the activity function,
we place a generalized Gaussian prior over vg,,, as in [14],
p(v) = T, GN (0.0, A, p), where GA(y;0, A, p) o e,
When 0 < p < 2 this distribution becomes super-Gaussian
and promotes the sparsity of active objects. Henceforth, we
assume 0 < p < 1. Furthermore, we would like to ensure
that each basis spectrum has a harmonic structure of a partic-
ular pitch. To do so, we shall place a Gamma prior over H,
namely p(H) = [[,, Gamma(H, x;vHy r + 1,3), where
Gamma(z;a,b) o« £ te™*, and its mode is given by H., .
I:Iwiyk is thus the most likely value for H,, ; and [ determines the
peakiness of the density around the mode.

Next, to impose Assumption 3, we first introduce a set of hyper-
parameters, 9 = {14 }o<da<p, Where 14 corresponds to the time
interval between the (d + 1)-th and d-th beat locations. With these
hyperparameters, we can design a Gaussian prior distribution over
the onset parameter 7

p(rl) = [ [N (Feini pus V), (10)

k,n



—1
=, (an

d—1
Pn = ZQM +
=0

where N (x; 1, 0%) o e’(”’“>2/2"2, pn denotes the most expected
location of the onset of the n-th object, 2 is the variance of the
Gaussian indicating how much 7y, ,, is allowed to deviate from p,,, [
is the number of divisions per beat, and the indices d, ¢ are such that
n = (d — 1)I + 4. To impose Assumption 4, we place a Gaussian
chain hyperprior over

D
H (Yaltha-1) (12)

p(Yaltha—1) = (wd,wd 1,0°). (13)

3. PARAMETER ESTIMATION

3.1. Maximum a posteriori (MAP) estimation problem

Given an observed spectrogram Y, we would like to find the esti-
mates of H, v, w, T, ¢, 1 that maximize the log posterior density
p(H,v,w,7,¢,%Y) < p(Y|H,v,w,7,¢)p(H)p(v)p(w)
p(T|Y)p(4p). We therefore consider the problem of maximizing

L(0) =logp(Y|H,v,w, T, )+ logp(H)+

log p(v) + log p(w) + log p(T|4p) + log p(¢)

subject to
[ ZHu,k =1, Vi Zuk,n,m =1, V4 :9%q >0,

Vw,k : Hw,k >0, vlv,n,m : Uk,n»wk,n,'rrba¢k,n7Tk,n >0,
where 0 denotes a set consisting of H, v, w, T, ¢, 1. Although it
is difficult to solve this optimization problem analytically, we can
develop a computationally efficient algorithm for finding a locally
optimal solution based on the auxiliary function concept, similar to
the one used in [12, 13].

3.2. Designing an auxiliary function

When applying an auxiliary function approach to a maximization
problem, the first step is to define a lower bound function for the ob-
jective function. The difficulty with the current maximization prob-
lem lies in the terms log p(Y |H, v, w, T, ¢) and log p(v). We use
the following inequalities to bound these terms from below:

Ing(Yth|H? v,w, T, ¢))

> Yw,t Z Ye,n,m,w,t 1Og

k,n,m

Hw,ka,n,m,t _

X, gt 1Og(Yw7t!),

Yk, n,m,w,t
A\1/P

p
kon) + Mien) + log ————,
) ) F108 S

log p(ven) = —A(pnS . (Vkon —

for vk, > 0, in which the exact bounds are achieved when

kaknmt
Zk’nm

Nke,n = Vk,n-

; (14)

Ye,n,m,w,t — G
w,k’ Tk n' m’t

(15)
The auxiliary function for our objective function will thus be defined

by replacing the terms log p(Ye, (| H, v, w, T, ®) and log p(vk,n)
with the lower bounds shown above.

135

3.3. Parameter updates

The next step is to derive update equations for the unknown param-
eters using the auxiliary function. Here, we must take account of the
normalization conditions for H, » and Wk n,m. As for H, ., below
we consider a simple updating procedure, which consists of solving
the unconstrained maximization of the auxiliary function and pro-
jecting its solution onto the constrained space. The update equations
are as follows:

Vk,n < Ak,n/(l + Apni;})? (16)
Zu,t Wk:,u,tGk:,n,m,t + o —1 a7
n,m — 7
Whin, Ak,n + Zm/(anl’ - 1)
—bi,n + bkn +4Aknckn
n - 18
Ok, 245 (18)
VB + Ok n{Va + (i — 1)oa/I}
Tk, < D) P ) (19)
v Ak,n + d)k,n
10°Y, (0= 1) (70— Ya) + 1% (a1 +at1) 20)
—
Y Ko2>,(i — 1)% + 21212 ’
Zt Yw tUk t/XuJ t +6Hw k
Hw — Hw : - - : ’ 21
b ek S G 4 @b
where Wi ot = Yot Ho i/ Xwt, Va = ld:_ol i and
Ak = WitV (22)
w,t
Bin = Wiwi y {t—(m—=1)¢kn} Grnme,  (23)
w,t m
b = (t = Toon) Wit D _(m = 1)Gn i, (24)
w,t m
Ckn = Z(t - Tk,n)QWk,w,th,n,t~ (25)

w,t

Based on the auxiliary function principle, the objective function is
non-decreasing under the updates (14), (15) and (16)—(21), and so
the convergence of the iterative procedure is guaranteed if each iter-
ation involves these updates.

4. EXPERIMENTAL RESULTS

To verify the performance of our method, we evaluated the onset de-
tection rate using a few recordings found in the RWC music database
[15]. The data for each evaluation were the first 23 s, mixed down to
a monaural signal and resampled to 16 kHz. The constant-Q trans-
form was used to compute spectrograms where the time resolution,
the lower bound of the frequency range, and the frequency resolu-
tion were set at 16 ms, 60 Hz and 12 cents, respectively. D and the
initial value of 14 were set at the values obtained with [16]. K
I, N, and M were set at 74, 4, D x I, and 20, respectively. v,
o, A were all set at 1. p, (3, and «,,, were set at 0.5, 1000, and
1000 x "™/ e~™' /3, respectively. The initial values of
Vkn»> Wi, mms bk,n, and 75, were set at 20, e’%/z ,e” 3,5,
and Z L apy + (i—1)vpa /1, respectively. The initial values of H., x
and H,,, k were set at the value obtained with the standard NMF ap-
plied to the piano excerpts from the RWC musical instrument sound
database [17]. The algorithm was run for 300 iterations, after which
any object whose energy vy /M ¢y, 1 Was less than a certain thresh-
old was considered to be silent.
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Fig. 2. An estimated piano roll (top) and the reference pitch data (bottom)
for Chopin’s Nocturne No. 2 in Eb-maj, Op. 9. The vertical dashed lines rep-
resent the estimated beats.

with the present method applied to Chopin’s Nocturne No. 2 in
Eb-maj, Op.9 (RWC-MDB-C-2001 No. 30). We compared the pro-
posed method with the standard NMF by employing the F-measure.
We used the same reference pitch data as in [12]. The number of
notes for the proposed method was simply the number of objects.
As for the standard NMF, H,, . was initialized in the same manner
as the proposed method, and after convergence the k-th basis spec-
trum was considered to be turned on at time ¢t when Uy ; exceeded
a threshold and turned off when it was below this threshold. The
threshold for each method varied from zero to the maximum value
of the activations, and the maximum F'-measure was selected. The
results are shown in Tab. 1. It is worth noting that it is harder to
obtain a high detection rate for an onset detection task than a frame-
by-frame pitch detection task. To illustrate this, consider a task that
involves detecting the pitch of a note with a duration of 100 frames.
Suppose that method A was able to detect all the frames correctly
except for one in the middle of the duration. The frame-by-frame
pitch detection rate in this case will be 99%. On the other hand, the
onset detection rate will be only 50% (one correct onset at the start-
ing frame and one inserted onset in the middle of the duration). As
can be seen from Tab. 1, the standard NMF model provided poor
results, implying that the basis activations obtained with the stan-
dard NMF had redundant peaks and dips. On the other hand, the
proposed method obtained a significantly higher detection rate espe-
cially for the piano recordings. The results for the guitar recordings
were not as high as for the piano recordings because the initial basis
H and the mode of the Gamma prior were set at the spectra of piano
notes. If we were also provided with a set of basis spectra learned
from other instruments, we would be able to obtain a higher detec-
tion rate for polyphonic music played on many kinds of instruments.
Furthermore, the initial setting of the estimates of the beat locations
is an important issue, that must be solved in the future, since it be-
came clear that the estimates of the beat locations were sensitive to
initialization.

5. CONCLUSION

In this paper, we proposed a new framework for the multipitch anal-
ysis of polyphonic music signals based on NMF. By incorporating
the object model into the activation matrix, the onsets and the beat
structure, which are very important for a proper audio-to-score mu-
sic transcription, can be obtained simultaneously, together with the
spectral basis matrix. We performed experiments that showed that

Table 1. Onset detection performance of the standard NMF and proposed
models. F, P and R correspond to I'-measure, precision, and recall, respec-

tively (%).

Data and Instruments Notes standard NMF proposed model
F P F P
C-2001, 30, Piano 119 189 137 1302 [ 68.8 | 664 | 714
C-200T, 35, Piano 50 10.3 5.8 440 | 64.4 | 725 | 380
J-2001, T, Piano 155 15.0 835 594 1 71.3 | 62.7 | 826
J-200T, 2, Piano 69 IT.8 6.8 435 | 64.9 | 60.8 | 69.6
J-200T, 6, Guitar 161 1438 9.0 416 | 59.3 | 589 | 59.6
J-2001, 7, Guitar 99 123 82 2472 | 44.0 | 482 | 404
J-2001, 8, Guitar 79 75 41 4T8 [ 30.7 [ 252 | 392
J-2001, 9, Guitar o4 1.7 7.1 330 | 51.8 | 495 | 543

this approach properly yields the onset times and the beat locations,
and also provides higher pitch estimation accuracy than the standard
NMEF. Our future work will include employing time-varying spectral
basis patterns to deal with the timbre change of the instruments [10],
improving the estimation of the beat locations by incorporating mod-
els of musical rhythm and implementing a transcription application
using this model.

[1

[2

[ —

3

—_

[4

=

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

136

6. REFERENCES

P. Smaragdis and J.C. Brown, “Non-negative matrix factorization for
polyphonic music transcription,” in Proc. WASPAA, 2003, pp. 177-180.

N. Bertin, R. Badeau, and G. Richard, “Blind signal decompositions
for automatic transcription of polyphonic music: NMF and K-SVD on
the benchmark,” in Proc. ICASSP, 2011, vol. 1, pp. 65-68.

S.A. Abdallah and M.D. Plumbley, “Unsupervised analysis of poly-
phonic music by sparse coding,” IEEE Trans. on Neural Networks, vol.
17, no. 1, pp. 179-196, 2006.

P. Smaragdis, “Non-negative matrix factor deconvolution; extraction of
multiple sound sources from monophonic inputs,” in Proc. ICA, 2004,
pp. 494-499.

M. N. Schmidt and M Mgrup, “Sparse non-negative matrix factor 2-
D deconvolution for automatic transcription of polyphonic music,” in
Proc. ICA, 2006, pp. 700-707.

T. Virtanen, “Monaural sound source separation by nonnegative matrix
factorization with temporal continuity and sparseness criteria,” IEEE
Trans. on Audio, Speech, and Language Processing, vol. 15, no. 3, pp.
1066-1074, 2007.

S. A. Raczynski, N. Ono, and S. Sagayama, “Multipitch analysis with
harmonic nonnegative matrix approximation,” in Proc. ISMIR, 2007,
pp. 381-386.

A. Ozerov, C. Févotte, and M. Charbit, “Factorial scaled hidden
Markov model for polyphonic audio representation and source sepa-
ration,” in Proc. WASPAA, 2009, pp. 121-124.

M. Nakano, J. Le Roux, H. Kameoka, Y. Kitano, N. Ono, and
S. Sagayama, “Nonnegative matrix factorization with Markov-Chained
bases for modeling time-varying patterns in music spectrograms,” in
Proc. LVA/ICA, 2010, pp. 149-156.

M. Nakano, J. Le Roux, H. Kameoka, T. Nakamura, N. Ono, and
S. Sagayama, “Bayesian nonparametric spectrogram modeling based
on infinite factorial infinite hidden Markov model,” in Proc. WASPAA,
2011, pp. 325-328.

G. J. Mysore, P. Smaragdis, and B. Raj, “Non-negative hidden Markov
modeling of audio with application to source separation,” in Proc.
LVA/ICA, 2010, pp. 140-148.

H. Kameoka, T. Nishimoto, and S. Sagayama, “A multipitch analyzer
based on harmonic temporal structured clustering,” IEEE Trans. on
Audio, Speech, and Language Processing, vol. 15, no. 3, pp. 982-994,
2007.

D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix fac-
torization,” in Proc. NIPS, 2000, pp. 556-562.

H. Kameoka, N. Ono, K. Kashino, and S. Sagayama, “Complex NMF:
A new sparse representation for acoustic signals,” in Proc. ICASSP,
2009, pp. 3437-3440.

M Goto, H Hashiguchi, T Nishimura, and R Oka, “RWC music
database: Popular, classical, and jazz music database,” in Proc. ISMIR,
2002, pp. 287-288.

D. P. W. Ellis, “Beat tracking by dynamic programming,” Journal of
New Music Research, vol. 36, no. 1, pp. 51-60, 2007.

M. Goto, “Development of the RWC music database,” in Proc. the 18th
International Congress on Acoustics (ICA 2004), 2004, pp. I-553-556.



