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ABSTRACT
In this paper a new approach for polyphonic piano note onset
transcription is presented. It is based on a recurrent neural
network to simultaneously detect the onsets and the pitches
of the notes from spectral features. Long Short-Term Mem-
ory units are used in a bidirectional neural network to model
the context of the notes. The use of a single regression out-
put layer instead of the often used one-versus-all classifica-
tion approach enables the system to significantly lower the
number of erroneous note detections. Evaluation is based
on common test sets and shows exceptional temporal preci-
sion combined with a significant boost in note transcription
performance compared to current state-of-the-art approaches.
The system is trained jointly with various synthesized piano
instruments and real piano recordings and thus generalizes
much better than existing systems.

Index Terms— music information retrieval, neural net-
works

1. INTRODUCTION

Music transcription is the process of converting an audio
recording into a musical score or a similar representation. In
this paper we concentrate on the transcription of piano notes,
especially on the two most important aspects of notes, their
pitch and onset times. To detect them as accurately as possi-
ble is crucial for a proper transcription of the musical piece.
We leave out higher level tasks like determining the length
of a note (given either in seconds or in a musical notation
like quarter note). Also we do not consider the velocity or
intensity. The output of the system is a simplified piano-roll
notation of the audio signal.

Traditional music transcription systems are based on a
wide range of different technologies, but all have to deal with
the subtasks of estimating the fundamental frequencies and
the onset locations of the notes. A very basic approach for-
mulated by Dixon [1] solely relies on the spectral peaks of
the signal to detect notes; local maxima represent the onsets
and the drop of energy below a minimum threshold marks the
offset of the note. Bello et al. [2] additionally incorporate
time-domain features to predict multiple sounding pitches
assuming that the signal can be constructed as a linear sum
of individual waveforms based on a database of piano notes.
Raphael [3] proposes a probability-based system which uses
a hidden Markov model (HMM) to find chord sequences.
The states are represented by frames with labels based on

the sounding pitches. Ryynänen and Klapuri [4] also use
HMMs to model note events based on multiple fundamental
frequency features. Transition between notes are controlled
via musical knowledge.

Most of today’s top performing piano transcription sys-
tems rely on machine learning approaches. Marolt [5] de-
scribes an elaborate approach based on different neural net-
works to recognize tones in an audio recording, combined
with adaptive oscillators to track partials. Poliner and Ellis [6]
use multiple support vector machine (SVM) classifiers trained
on spectral features to detect the sounding fundamental fre-
quencies of a frame. Post-processing with HMM is applied
to temporally smooth the output. Boogaart and Lienhart [7]
use a cascade of boosted classifiers to predict the onsets and
the corresponding pitches of each note. All these systems
use multiple classifiers and thus can not reliably distinguish
whether a sounding pitch is the fundamental frequency of a
note or a partial of another one. This results in lots of false
note detections. In contrast, our system uses a single regres-
sion model and is thus able to distinguish between these states
and hence lowers the number of false detections significantly.

2. SYSTEM DESCRIPTION

Figure 1 shows the proposed piano transcription system. It
takes a discretely sampled audio signal as its input. The sig-
nal is transferred to the frequency domain via two parallel
Short-Time Fourier Transforms (STFT) with different win-
dow lengths. The logarithmic magnitude spectrogram of each
STFT is then filtered to obtain a compressed representation
with the frequency bins corresponding to the tone scale of
a piano with a semitone resolution. This representation is
used as input to a bidirectional Long Short-Term Memory
(BLSTM) recurrent neural network. The output of the net-
work is a piano-roll like representation of the note onsets for
each MIDI note.
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Fig. 1: Proposed piano transcription system overview.
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2.1. Feature extraction

As input, the system takes a monophonic pulse code mod-
ulated (PCM) audio signal x(n) with a sampling rate of
fs = 44.1 kHz in floating point representation (in the range
of [−1...1]). The signal is split into overlapping frames with
frame lengths of 2048 and 8192 samples (46.4 and 185.8 ms).
Different frame lengths have been chosen to achieve both a
good temporal precision and a sufficient frequency resolution
for the transcription of the notes. Two consecutive frames
are located 10 ms apart, resulting in a constant frame rate
fr = 100 fps. A Hamming window with the same size as
the frame is applied before the signals are transferred to the
frequency domain with the Short-Time Fourier Transform.

Phase information of the resulting complex spectrograms
X(n, k) is omitted, and only the magnitude values are used
for all further calculations. A logarithmic representation of
the magnitude spectrograms is advantageous, compared to the
linear one. To avoid negative values and to put the values in
a suitable range for the following neural network stage, the
spectrograms are multiplied with a factor 1000 and a fixed
value of 1 is added before taking the logarithm. These values
yielded the best results during preliminary tests.

To reduce the dimensionality of the input vector of the
neural network, the two magnitude spectrograms S(n, k) are
filtered with semitone filterbanks F (m, k). The frequencies
m are spaced equally on a logarithmic frequency scale and
are aligned according to the pitches of the 88 MIDI notes
(i.e., semitone spacing). This spacing is expanded up to the
maximum frequency of 16 kHz. Overlapping triangular fil-
ters are used to combine multiple spectrogram frequency bins
into one. The area of each filter is normalized to 1 to compen-
sate the overemphasis of high frequencies. Finally duplicate
filters (which occur if the frequency resolution of the STFT
is too coarse for low MIDI pitches) are eliminated. This re-
sults in a dimensionality reduction from 5120 values of the
two spectrograms down to 183.

The use of a semitone spacing instead of a less granu-
lar one (e.g., quarter tone) has two main advantages: first, it
reduces the dimensionality of the input vector for the neural
network by roughly a factor of two, thus resulting in reduced
training time. It also desensitizes the whole system against
minor tuning variations of different pianos, hence leading to
a much better generalization without the need for a manual
adjustment of the piano tuning.

Since the energy of the signal rises during the note at-
tack phase which directly follows the note onset, also the first
order differences of the semitone filtered spectrograms are in-
cluded. For the small window length, the difference is cal-
culated to the preceding frame, whereas for the long window
length it is calculated relative to the frame at the index n− 4.
This measure cancels the delay of the rise in energy relative
to the actual note onset position. Although adding the first
order differences doubles the input vector size of the neural
network from 183 to 366, it increases the overall transcription
performance and simultaneously reduces the needed training
epochs, since the network converges faster.

2.2. Neural Network

For the neural network stage, a bidirectional recurrent neural
network (RNN) with Long Short-Term Memory (LSTM) units
is used. Compared to feed forward neural networks (FNNs),
RNNs have the advantage that they are able to model tem-
poral contexts due to the use of recurrent connections in the
hidden layers. Although theoretically able to remember any
past values, they suffer from the vanishing gradient problem,
i.e., input values decay or blow up exponentially over time,
thus limiting their range to a maximum of a few time steps.
Hochreiter and Schmidhuber [8] developed a new method
called LSTM to overcome this problem. Each LSTM block
has a recurrent connection with weight 1.0 which enables the
block to act as a memory cell. Input, output, and forget gates
control the content of the memory cell through multiplicative
units and are connected to other neurons as usual.

A bidirectional recurrent neural network (BRNN) dou-
bles the number of hidden layers and presents the input values
to the newly created set of hidden layers in reverse temporal
order. This offers the advantage that the network not only has
access to past input values but can also ‘look into the future’.

If BRNNs are used in conjunction with LSTM neurons,
a bidirectional Long Short-Term Memory (BLSTM) recurrent
neural network is built. It has the ability to model a wider
temporal context around a given input value. For the detec-
tion of notes this is an essential feature, since the onset is not
only characterized by an increase in energy during the attack
phase, but also by a special energy envelope during the fol-
lowing decay, sustain, and release phases.

BLSTMs have been successfully implemented in systems
for onset detection [9] and beat detection and tracking [10]
which both showed state-of-the-art performance in their re-
spective field. In contrast to those implementations, the neu-
ral network of this approach uses a regression output layer.
The biggest advantage compared to multiple classifier sys-
tem [5, 6, 7] lies in the ability of the system to correctly iden-
tify whether a sounding pitch is the fundamental frequency of
a note or a partial of another one, thus reducing the number
of false positive and negative note detections significantly.

The used neural network has three bidirectional hidden
layers with 88 LSTM units each. The regression output layer
has 88 units, each representing one MIDI pitch. The output
of these units represent the activation functions for each note.

2.2.1. Network training

The network is trained with supervised learning and early
stopping. The used training data set is described in Section 3.
Together with the target values extracted from the MIDI data,
each audio sequence is preprocessed as described above and
presented to the network for learning. The network weights
are initialized with random values following a Gaussian dis-
tribution with mean 0 and standard deviation 0.1. Standard
gradient descent with backpropagation of the errors is used
to train the network. To prevent over-fitting, performance is
evaluated after each training iteration on the validation set. If
no improvement on the summed squared error is observed for
20 epochs, the training is stopped.
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2.2.2. Network testing

For the evaluation of the system, the unknown music excerpts
of the test set are preprocessed as described in Section 2.1 and
presented to the previously trained network. The resulting
note activation regression matrix of the output nodes is used
as input to the following stage.

2.3. Note onset and pitch detection

The notes onset times and pitches are derived directly from
the neural network output. The activation values for each
pitch are smoothed with a Hamming window of 90 ms length
before being thresholded. The length of the window is not
crucial as long as it is smaller than the duration between two
consecutive notes of the same pitch. The threshold is deter-
mined individually per note on the validation set by: θp =
argmaxθ{TPθ−FPθ−FNθ}, TP denoting true positive, FP
false positive, and FN false negative detections. A standard
local maximum peak picking algorithm is applied to gather
the final note onset positions for each pitch.

3. DATA

Solo piano music has been chosen for training and evalua-
tion of the described system. As a basis, the musical ren-
derings and recordings of the MAPS database1 introduced
by Emiya [11] are used. They consist of 209 pieces ren-
dered by seven different software synthesizers and 60 real
piano recordings with an upright Yamaha Disklavier. To ex-
pand the dataset, 267 MIDI files from the same source, the
Classical Piano Midi Page2, were synthesized with the freely
available Maestro Concert Grand v23 sound font. To compen-
sate the emphasis towards synthesized sounds, the LabROSA
Disklavier recordings4 (used for evaluation in [6]) and real au-
dio recordings of 13 Mozart sonatas played on a Bösendorfer
SE290 computer monitored grand piano by the pianist Roland
Batik were added to the set. The whole dataset is split into
training, validation, and testing examples according to the
original splitting in [6], thus maintaining the comparability
of the results. Table 1 shows the distribution of the dataset.

Number of notes training validation testing

MAPS (MIDI instruments) 854507 108778 107310
MAPS (Disklavier) 86026 16495 5675
MIDI (Maestro Concert) 519479 59838 71225
Batik (Bösendorfer) 76095 13387 16926
LabROSA (Disklavier) 47134 0 23298

Table 1: Note distribution of the datasets.

1http://www.tsi.telecom-paristech.fr/aao/en/2010/07/08/
2http://www.piano-midi.de
3http://www.linuxsampler.org/instruments.html
4http://labrosa.ee.columbia.edu/projects/piano/

4. RESULTS

To measure the performance of our system, standard preci-
sion, recall, and f-measure scores are used. Another measure
is the accuracy, defined by Dixon in [1]. Since it counts false
detections twice (both the false negative and the false positive
detection), error scores as used by Poliner [6] are provided
additionally; Esubs denote note substitutions, Emiss missed
notes, Efa false additions, and Etot the sum of all errors.

4.1. Note Onset Transcription

An onset is considered as correctly identified if its pitch is cor-
rectly identified and its location is within a certain window
around the ground-truth position. For onset detection usu-
ally a 100 ms window is used, and the results given in [6] use
this window length as well. [7] uses a window of 68.25 ms.
Although penalizing our system, we give results only for a
detection window of 50 ms.

Dataset [%] Acc Etot Esubs Emiss Efa

MAPS (MIDI) 84.0 15.3 2.9 6.8 5.6
MAPS (Disklavier) 68.7 32.6 6.6 17.0 9.0
MIDI 88.9 9.9 2.0 4.0 3.9
Batik 90.1 9.9 0.3 6.4 3.2
LabROSA 62.7 39.3 9.6 17.8 11.9

complete 85.6 13.7 2.5 6.1 5.1
complete (w/o octave) 89.7 9.2 2.5 5.3 1.4

Poliner [6] 62.3 43.2 4.5 16.4 22.4
Boogaart [7] 87.4 - - - -

Table 2: Note onset transcription accuracy and error rates for
the partial and complete test sets.

Table 2 shows the accuracy and error rates for the differ-
ent test sets compared to other state-of-the-art systems. The
new approach clearly outperforms the system of Poliner and
Ellis [6] not only in case of the complete test set, but even
for the most difficult partial test set (the LabROSA Disklavier
recordings). This does not only show the good performance
of our approach, but also highlights its good generalization
capability. Concurrent with the rise in accuracy, all error score
are significantly lower. This demonstrates the ability of the
system to detect even difficult notes without adding a high
number of false detections.

If only a single instrument is evaluated (i.e., the MIDI test
set), the systems also performs better than the one of Boogaart
and Lienhart [7], which was trained with a single MIDI in-
strument. This is remarkable, since our system is not trained
specifically for a single instrument. Trained solely on the
MIDI dataset, our system achieves an accuracy of 93.6%, ex-
ceeding their results even further.

The much better result for the Batik test set can be
explained by the lower musical complexity of the Mozart
sonatas compared to other musical pieces of the test set.

Tonal misalignments can have different impacts on human
perception. A pitch error of an octave does usually not harm
the overall impression very much, whereas other transcription
errors can spoil a musical piece completely. Therefore Table 2
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also adds results if octave errors are not considered. Since the
number of errors are almost evenly distributed across all test
sets, only one result for the complete test set is given. Not
counted are errors occurring due to notes being added exactly
one octave below or above the correct pitch, or notes that are
missed if there is a detection exactly one octave apart. It can
be seen that more than 70% of the spuriously added notes are
pitched exactly one octave aside and hence do not harm the
musical perception much.

4.2. Temporal resolution

According to Handel [12], 5 ms is the threshold of perceptual
difference for musical performances. For piano transcription
it is therefore highly desirable to achieve the maximum pos-
sible temporal precision. Table 3 shows the precision, recall,
f-measure and accuracy results for different detection window
sizes on the whole test set. The system achieves roughly the
same performance for all detection windows down to a length
of 50 ms. If the window size is reduced to 30 ms (which cor-
responds to a maximum deviation of the detection by a single
frame in both directions at the used frame rate), the perfor-
mance starts to decrease. Even if only the annotated frame
is used for evaluation, the system is still performing decently,
highlighting the exceptional temporal precision. It should be
noted that the Disklavier recordings sometimes have annota-
tion inaccuracies of up to 15 ms, which explains the much
lower result if only one frame is considered.

Detection size Precision Recall F-measure Accuracy

100 ms 0.936 0.917 0.927 86.3%
70 ms 0.935 0.917 0.926 86.2%
50 ms 0.933 0.915 0.924 85.9%
30 ms 0.924 0.906 0.915 84.4%
10 ms 0.738 0.723 0.730 57.5%

Table 3: Note onset transcription results for the complete test
set measured with different window detection sizes.

The use of multiple spectrograms enables the algorithm
to achieve such a good temporal performance. Inspection
of the internal states of the neural network shows that the
network gathers timing information almost exclusively from
the spectrogram and the differences obtained with the shorter
STFT window length, while the information needed to deter-
mine the pitch of a note (especially the lower pitched ones)
is mostly obtained from the spectrogram with the longer win-
dow.

5. CONCLUSION

In this paper we presented a new piano transcription sys-
tem which is a significant step towards real audio-to-MIDI
transcription. It gives exceptional temporal precision paired
with state-of-the-art note onset and pitch transcription perfor-
mance.

The evaluation on publicly available test sets shows that
our approach greatly reduces both the number of false positive

and negative note detections. The reduction is mainly due to
the use of a single regression output layer to simultaneously
detect note onsets and pitches compared to the one-versus-
all classification approaches. Only holistic systems can de-
cide whether a sounding frequency is the real fundamental
frequency or a harmonic overtone of another note.

Furthermore our system generalizes very well over a wide
range of various pianos, resulting in transcription results pre-
viously only achieved by systems tuned specifically for a sin-
gle instrument.

6. ACKNOWLEDGMENTS

This research is supported by the Austrian Science Funds
(FWF): P22856-N23.

7. REFERENCES

[1] S. Dixon, “On the computer recognition of solo piano music,”
in Proceedings of the Australasian Computer Music Confer-
ence, 2000.

[2] J.P. Bello, L. Daudet, and M.B. Sandler, “Automatic piano
transcription using frequency and time-domain information,”
IEEE Transactions on Audio, Speech, and Language Process-
ing, vol. 14, no. 6, November 2006.

[3] C. Raphael, “Automatic transcription of piano music,” in Pro-
ceedings of the 3rd International Conference on Music Infor-
mation Retrieval (ISMIR 2002), 2002.

[4] M.P. Ryynänen and A. Klapuri, “Polyphonic music transcrip-
tion using note event modeling,” in IEEE Workshop on Appli-
cations of Signal Processing to Audio and Acoustics, 2005.

[5] M. Marolt, “A connectionist approach to automatic transcrip-
tion of polyphonic piano music,” IEEE Transactions on Multi-
media, vol. 6, 2004.

[6] G.E. Poliner and D.P.W. Ellis, “A discriminative model for
polyphonic piano transcription,” EURASIP J. Appl. Signal Pro-
cess., January 2007.

[7] C.G.v.d. Boogaart and R. Lienhart, “Note onset detection for
the transcription of polyphonic piano music,” in Proceedings
of the IEEE International Conference on Multimedia and Expo
(ICME 2009), July 2009.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computing, vol. 9, no. 8, 1997.
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