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ABSTRACT

In this paper, we apply a blind signal extraction scheme for two mi-
crophones to the problem of dereverberation. The system consists of
a blocking matrix that cancels the target signal as well as reverber-
ated components up to a certain time lag, thus obtaining a reference
not only for noise and interference, but also for late reverberation,
which can then be suppressed with a Wiener filter, while leaving
early reverberation components largely intact. The performance is
assessed in terms of recognition rate of an automatic speech recog-
nizer trained on clean speech, using sentences from the GRID cor-
pus convolved with measured room impulse responses. We show
that the system, although primarily developed for noise and interfer-
ence suppression in low SNR conditions, can significantly suppress
reverberation and thereby improve recognition results.

Index Terms— Dereverberation, blind source separation,
source extraction, speech enhancement

1. INTRODUCTION

Many emergent applications require the distant recording of speech
signals, e.g., video telephony, where the microphones are usually
placed near the camera, or voice control in home automation, where
the user should be able to be untethered while controlling appli-
cances.

Distant-talking speech interfaces introduce a number of addi-
tional challenges. One of the main factors for deteriorating speech
intelligibility and speech recognition performance in such scenar-
ios is reverberation. While the early part of a room impulse response
only causes a coloring of the signals, late reverberation causes a tem-
poral smearing of speech features that affects both speech intelligi-
bility and the performance of automatic speech recognition (ASR)
systems.

Many algorithms have been proposed for speech dereverbera-
tion. They can be differentiated in two categories: inverse filtering
algorithms (e.g., MINT [1], linear prediction-based deconvolution
[2] or TRINICON [3]), and algorithms that estimate and suppress
reverberation, e.g., with spectral subtraction or Wiener filtering (see,
e.g., [4]). For an overview of the state of the art, see [5].

In this paper, we describe a two-channel blind signal extraction
(BSE) algorithm that was originally developed for the suppression
of point-like interferers and diffuse noise, and investigate its perfor-
mance for dereverberation in terms of speech recognition accuracy.
The algorithm consists of a blind source separation (BSS) system for
estimating undesired signal components (here: reverberation) and a
Wiener filter for suppressing these components in the microphone

signals. The BSS algorithm is based on the TRINICON framework
[6]. Our BSE system was already presented and investigated for
noise and interference reduction in various applications [7, 8, 9].
Other researchers have published similar approaches based on dif-
ferent BSS algorithms, e.g., in [10], but to our best knowledge these
concepts have not been applied to reverberation suppression. Al-
though a combination of BSS-based interference and reverberation
suppression was presented in [11], there, a separate late reverbera-
tion estimator based on a model of the late impulse response was
used. In our algorithm, no estimation or model of the impulse re-
sponse is needed in order to reduce reverberation; instead, the algo-
rithm can estimate and suppress late reverberation components in the
same way as other undesired signal components.

The paper is organized as follows: our blind signal extraction
scheme is briefly reviewed in Sect. 2, the experimental setup and
results are presented in Sect. 3, and Sect. 4 concludes the paper.

2. BSS-BASED SOURCE EXTRACTION

The general problem addressed by our BSE system is illustrated in
Fig. 1. A mixture of a desired signal s1 and Q−1 interfering signals
s2 . . . sQ is recorded with P = 2 omnidirectional microphones. The
signal path between source q, q = [1, . . . , Q] and microphone p,
p ∈ {1, 2} is modeled as a convolution of the signals with room
impulse responses hqp, i.e., we record a convolutive mixture. In
general, additive noise of unknown coherence nb,p, p ∈ {1, 2} may
also be present. Signals are represented in the discrete time domain,
sampled with a sampling rate fs.

For the investigation of the dereverberation properties of the al-
gorithm in this paper, we assume that no additive noise and only the
desired source s1 are present, with the desired source located at ap-
proximately 0◦ (broadside direction). In practice, this constraint on
the target source position can be removed by combining the source
extraction scheme with a localization algorithm [7].

We furthermore define hqp,E and hqp,L as the early and late parts
of the impulse responses, respectively, with the time TE defining the
instant when the late reverberation starts:

hqp,E =hqp(0 . . . TEfs − 1) (1)

hqp,L =hqp − hqp,E (2)

The structure of the BSE unit is shown in Fig. 2. The main com-
ponents are a BSS-based blocking matrix that estimates a noise ref-
erence from the microphone signals by canceling the desired source,
and a noise suppression filter driven by this noise reference.

In the following sections, these two components of the system
are described in more detail, and we will show how this scheme,
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originally designed for noise and interference suppression, can be
generalized for reverberation suppression.

2.1. Estimation of Undesired Signal Components

The aim of the blocking matrix is to suppress the desired signal s1
contained in the recorded microphone signals as strongly as possi-
ble, in order to continuously provide a good reference for all the
undesired signal components acquired by the microphones. The cor-
responding noise components in x1 and x2 can then be suppressed
with a time-varying filter g.

We use a BSS system based on the TRINICON framework [6].
The algorithm adapts the demixing filters wpq , q ∈ {1, 2} (Fig. 2)
with the aim of minimizing mutual information between outputs, and
thereby separating independent components of the recorded mixture.
However, with two microphones, this approach can only separate
two sources (determined case), which is why we do not use the BSS
algorithm directly for the extraction of the desired source, but as
a noise estimator. To separate all noise components from the tar-
get signal in the general underdetermined case, the BSS algorithm
is extended by a directional constraint that forces a spatial null to-
wards the direction of the desired source, while suppressing corre-
lated components from other directions (i.e., reflections) as well [7].
Thus, we use only one of the output signal paths of the BSS demixing
system, the interference canceler formed by w11 and w21 (Fig. 2).

The directional constraint is implemented by extending the BSS
cost function JBSS by the geometrical constraint JC [12, 7]:

JDirBSS = JBSS + ηCJC, (3)

JC = ‖ w11(k) + w21(k − τφ) ‖
2
, (4)

with the TDOA τφ of the desired signal (here: τφ = 0 as it is as-
sumed that the desired source is located in broadside direction). It
can be seen that, when the demixing filters w11 and a τφ-shifted ver-
sion of w21 cancel each other, this constraint becomes zero. The

weight ηC controls the relative importance of the directional con-
straint [7].

By setting the directional constraint so that the desired source is
suppressed in output 1 of the demixing system, we obtain the noise
estimate as:

n̂ = y1 = v1 + v2 = w11 ∗ x1 + w21 ∗ x2. (5)

So far, the generic functionality of the blocking matrix has been
described. In what follows, it is shown how this directional BSS-
based concept can be used to estimate late reverberation, i.e., to sep-
arate early reflections from late reverberation. The reason why we
specifically target late reverberation is, that it has been shown that
the suppression of early reverberation (up to approx. 50 ms) is detri-
mental to speech recognition performance [13].

As shown in [7], directional BSS as a blocking matrix can can-
cel the direct path and correlated components, i.e., reverberation. As
a consequence, reverberation components of the target signal are not
contained in the noise reference, and therefore not suppressed, so
that distortion of the target signal is avoided. By truncating the BSS
demixing filters to a length corresponding to the early reverberation
part up to the threshold TE ≈ 50ms, the BSS algorithm can only
cancel the early reverberation up to TE, and thus we obtain a refer-
ence n̂ for the late reverberation.

An ideal solution for the demixing filters, i.e., filters that ideally
equalize and thereby cancel the desired signal and its early reverber-
ation components, is given by:

w11 = hE,12 (6)

w21 = −hE,11. (7)

2.2. Suppression of Undesired Signal Components

For suppression of the undesired signal components (here: late re-
verberation), the signals are divided into subbands using an oversam-
pled DFT filterbank. In the following, subband signals are denoted
with the corresponding uppercase letters.

For each processing block k and subband γ, a frequency-domain
filter weight G(γ)[k] is computed based on Wiener filtering with an
overestimation factor μ and a spectral floor Gmin [14]:

G
(γ)[k] = max

(
1− μ

1

ˆSNR
(γ)

est

, Gmin

)
. (8)

The frequency-dependent SNR of the microphone signals is es-
timated based on the reference n̂ and the filtered microphone signals
v1 and v2:

ˆSNR
(γ)

est =
1
2
(S

(γ)
v1 [k] + S

(γ)
v2 [k])

S
(γ)′
n̂ [k]

, (9)

where S(γ)′
n̂ [k] is the corrected (see below) PSD (power spectral den-

sity) of the noise estimate at the BSS output, and S
(γ)
vp [k], p ∈ {1, 2}

are the PSDs of the BSS-filtered microphone signals. The power
spectral densities are estimated recursively with a forgetting factor
λ, with 0 < λ < 1.

An additional correction of the noise PSD is performed with the
coherence of the noise at the microphones:

Sn
(γ)′[k] =

Sn
(γ)[k]

2(1 + �{Γ(γ)})
(10)

This correction is necessary in order to obtain a noise PSD estimate
that can be applied to the individual microphone channels from the
combined noise PSD, and is discussed in detail in [9].
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If we approximate the noise field as spherically isotropic [15]
and the microphones as omnidirectional, and assume that the BSS
demixing filters do not change the coherence of the noise compo-
nent, we obtain the theoretical coherence function [16]

Γ
(γ)
diffuse = − sinc

(
2πf (γ)d

c

)
, sinc(·) =

sin(·)

·
, (11)

where f (γ) is the center frequency of the subband γ, d is the micro-
phone spacing and c is the speed of sound.

As shown in Fig. 2, the noise reduction filter is applied to both
microphone signals, which are then added to yield the output signal
ŝ1 (after resynthesizing the time-domain signal) as an estimate of
the desired source signal s1 with significantly reduced late reverber-
ation:

Ŝ
(γ)
1 [k] = G

(γ)[k] · (X
(γ)
1 [k] +X

(γ)
2 [k]). (12)

3. EXPERIMENTS

We evaluate the performance of our BSE algorithm for dereverbera-
tion based on speech recognition accuracy with a speech recognizer
trained on clean speech. Since noise and interference suppression
performance was already investigated in previous papers [8, 9], we
focus only on the dereverberation aspect here.

3.1. Signals and Setup

We use clean speech sentences from the GRID corpus [17] as source
signals. The GRID corpus consists of 34000 sentences with a simple
syntax, spoken by 34 different speakers. For the evaluation, we use
a test set of 2000 randomly selected sentences from the corpus.

To create the reverberated signals, we use impulse responses
from a lecture hall with a reverberation time T60 ≈ 900ms and a
critical distance dc ≈ 0.9m. The impulse responses were measured
using maximum length sequences and truncated to 10000 samples at
the sampling rate of fs = 16 kHz. Two scenarios are considered,
one where the speaker-microphone array distance is l = 2m, and
one where l = 1m. The two microphones are omnidirectional and
placed 8.4 cm apart.

Fig. 3 compares the theoretical coherence of spherically isotropic
noise and the actual coherence computed from the estimated late re-
verberation component. We can see that the assumption made in
Sect. 2.2 matches the data quite closely.
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Fig. 3. Coherence for spherically isotropic noise, and actual coher-
ence of late reverberation estimate (l = 2m)

3.2. Dereverberation

For the BSS-based blocking matrix, we compute a set of fixed BSS
demixing coefficients that are obtained by concatenating multiple re-
verberated GRID sentences and performing the BSS adaptation. The
demixing filter length is set to 800 samples, according to the defined
late reverberation threshold TE = 50ms. Additionally, to determine
the maximum performance achievable by this system structure, we
also investigate using ideal demixing filters with length 800 (accord-
ing to Eq. 6) instead of BSS-adapted filters for the blocking matrix.

The frequency-domain Wiener filter is implemented with a
polyphase filterbank with a filter length of 1024, 512 complex-
valued subbands, and a downsampling rate of 128. The overestima-
tion factor μ is set to 1.5, the maximum suppression gain Gmin is
set to 0.12. These values were empirically found to yield close to
maximum recognition rates both with the directional BSS and the
ideal demixing filters.

For further comparison, we investigate the performance of a
Wiener filter based on the true late reverberation obtained by con-
volving the clean signals with only the late part (according to TE)
of the measured impulse responses. We use a common Wiener filter
for both channels with the same parameters as in the BSE system,
however with an overestimation factor μ = 1.2 and without the co-
herence correction.

As a measure for the amount of late reverberation in the pro-
cessed and unprocessed signals, we define a signal-based early to
late reverberation ratio:

ELRRP =
||P(s1 ∗ hE)||

2

||P(s1 ∗ hL)||2
, (13)

where P is the linear operator that describes the effect of the dere-
verberation operation on the early and late reverberation components
of the signal s1.

As an isolated measure for the success of the blocking matrix,
we define the target suppression (here: the amount of early reverber-
ation suppression) obtained by the blocking matrix:

TSBM =
ELRRx1+x2

ELRRn̂

=

||s1∗h11,E+s1∗h12,E||2

||s1∗h11,L+s1∗h12,L||2

||s1∗h11,E∗w11+s1∗h12,E∗w21||2

||s1∗h11,L∗w11+s1∗h12,L∗w21||2

. (14)

To quantify the amount of distortion of the desired signal com-
ponents caused by the Wiener filter, we define the signal distortion

SDP =
||P(s1 ∗ hE)− s1 ∗ hE||

2

||s1 ∗ hE||2
, (15)

where, again, P represents the dereverberation operation.

3.3. Automatic Speech Recognizer

In order to assess the improvement obtained by the proposed late
reverberation suppression scheme, we perform speech recognition
experiments with a recognizer based on Pocketsphinx [18]. A finite-
state language model is defined according to the structure of the
GRID sentences. The recognizer uses triphone HMMs with 3 states
per model, 8 Gaussian output densities per state, and a total number
of 600 tied states, with features based on 13 mel-frequency cepstral
coefficients (MFCCs) with velocity and acceleration. The acoustic
model is trained using 32000 clean speech sentences from the GRID
corpus (the 2000 sentences from the test set are not used for train-
ing). No speaker-specific adaptation is performed.

For the recognition output, an accuracy score is computed in the
same way as in the CHiME challenge [19], where only two words
within the sentence (a letter and a digit) are considered.
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TS BM ELRR accuracy SD
clean - 93.3% -
sum - 8.99 dB 81.0% -
BSE, proposed 13.77 dB 12.47 dB 87.7% -14.54 dB
BSE w. ideal demix. 11.76 dB 88.0% -16.86 dB
WF w. ideal ref. - 13.75 dB 90.5% -18.75 dB
sum - 3.93 dB 56.4% -
BSE, proposed 5.79 dB 7.53 dB 73.9% -9.32 dB
BSE w. ideal demix. 7.37 dB 77.4% -11.57 dB
WF w. ideal ref. - 10.08 dB 86.5% -13.07 dB

l=
2 

m
l=

1 
m

Table 1. Experimental results: BSE target suppression, early to
late reverberation ratio, recognition accuracy and signal distortion
for clean, reverberated and processed signals.

3.4. Results

Table 1 summarizes the results of the experiments in both scenar-
ios. The baseline recognition rate is obtained by applying the recog-
nizer to the sum of both microphone signals. It can be seen that the
proposed BSS-based reverberation suppression scheme improves the
recognition accuracy significantly relative to the baseline and comes
close to the performance obtained by using ideal demixing filters for
the noise estimate. Note that the ELRR improvement is similar in
the cases of BSS and ideal demixing filters; however, using the lat-
ter causes a significantly lower signal distortion, due to the perfect
target suppression of the blocking matrix.

Using an ideal reference of late reverberation components would
further improve the result; this is because, although the ideal demix-
ing filter perfectly cancels the early reverberation, it only provides a
spatially filtered noise reference that has to be normalized again us-
ing the coherence assumption, and furthermore, because the demix-
ing filters cause a temporal distortion of the noise reference and the
microphone signals which are the basis for the suppression filter
computation.

Note that the signals were free of noise and interference, the
improvement in recognition rate is therefore solely based on the re-
duction of late reverberation. However, since the system is based
not on estimating or modeling the late reverberation components di-
rectly, but suppressing the early reverberation components to obtain
a reference of all undesired signal components, the presence of noise
and interference does not impact dereverberation performance of the
algorithm.

4. CONCLUSION

A two-channel source extraction scheme based on directional BSS
for noise estimation and Wiener filtering for noise suppression was
presented and applied to the reduction of late reverberation. We have
shown that by using a BSS algorithm to cancel direct path and early
reverberation components of a target signal, we can obtain a ref-
erence for not only noise and interference, but also late reverbera-
tion, which can then be suppressed with a Wiener filter, allowing a
significant reduction of late reverberation and a corresponding im-
provement in speech recognition accuracy of an ASR system. While
algorithms targeted only at reverberation may achieve still better re-
sults, this confirms the versatility of the blind source extraction ap-
proach for the reduction of arbitrary undesired signal components.
We would like to emphasize that this approach is in general valid for
all BSS algorithms that can achieve cancellation of direct path and
early reverberation components of a target signal.
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