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ABSTRACT

In this paper, we propose a new framework to separate multi-
ple speech signals and reduce the additive acoustic noise using
multiple microphones. In this framework, we start by formulat-
ing the minimum-mean-square error (MMSE) criterion to retrieve
each of the desired speech signals from the observed mixtures of
sounds and outline the importance of multi-speaker activity de-
tection. The latter is modeled by introducing a latent variable
whose posterior probability is computed via expectation maxi-
mization (EM) combining both the spatial and spectral cues of the
multichannel speech observations. We experimentally demon-
strate that the resulting joint blind source separation (BSS) and
noise reduction solution performs remarkably well in reverberant
and noisy environments.

Index Terms— Microphone arrays, blind source separation,
multichannel Wiener filter, noise reduction.

1. INTRODUCTION

In real world acoustic environments, background noise and mul-
tiple competing speakers can coexist in the same reverberant en-
closure (e.g., teleconferencing rooms with multiple participants
and noise sources). Retrieving speech signals of interest from the
observed sound mixtures turns out to be quite challenging in this
context due to the detrimental effects of reverberation and noise,
yet highly desirable due to the diversity of its applications.

Traditionally, blind source separation (BSS) is achieved by
exploiting the mutual independence between source signals via
the celebrated independent component analysis (ICA). Informa-
tion maximization (InfoMax) and FastICA are state of the art al-
gorithms that have been shown to be very efficient in separating
speech signals [1, 2, 3]. Besides, the speech representation in
the time-frequency (t-f) domain reveals the important property of
sparseness following which the major speech components of si-
multaneously active speakers rarely overlap [4, 5]. This has led
to the development of clustering-based BSS approaches where t-f
masking is applied once the speech mixture is well clustered. In
[6], for instance, Sawada et al. proposed a powerful method that
uses the spatial signatures of simultaneously active speakers in
the absence of noise to cluster and separate them via binary mask-
ing. In contrast to BSS, noise reduction approaches have been
essentially developed to recover a single speech signal which is
corrupted by some acoustic noise. It is generally assumed that
the noise is sufficiently stationary so that it can be tracked dur-
ing the absence of speech and reduced using the Wiener filter or
minimum variance distortionless response (MVDR), for instance
(see [7] and references therein).

It is known that the performance of BSS deteriorates in the
presence of acoustic noise. On the other hand, noise reduction al-
gorithms are commonly designed to recover a single speech sig-

nal. To overcome both limitations, we propose a new framework
that achieves simultaneous multiple speech sources separation
and noise reduction. This framework is based on the minimum-
mean-square error (MMSE) criterion whose formulation in the
current context requires the detection and tracking of the activity
of every speaker. Hence, we introduce a latent variable to model
the multi-speaker activity and use the spatial and spectral cues
of the observed mixtures of sounds via expectation maximization
(EM) to estimate its posterior probability. The present work ex-
tends our proposal in [8] where only the spatial information is
used to track the speech sources.

2. DATA MODEL AND ACTIVITY PATTERN OF
MULTIPLE SPEAKERS

Let us consider the case ofN ≥ 1 speakers and an array ofM mi-
crophones located in the same acoustic enclosure. The recorded
signals are chopped into frames and transformed into the fre-
quency domain via short time Fourier transform (STFT). At time
frame l and frequency k = 1, ..., K, where K is the number of
frequency components, we have

y(k, l) ≈
N∑

n=1

xn(k, l) + v(k, l), (1)

where y(k, l) = [Y1(k, l) · · · YM (k, l)]T and xn(k, l) =
hn(k)Sn(k, l). These vectors contain the M noisy sound mix-
tures and reverberant microphone observations of the nth speech
signal, respectively. hn(k) = [H1n(k) · · · HMn(k)]

T con-
tains the channel transfer functions between the nth source,
Sn(k, l), and all microphone elements, and v(k, l) =
[V1(k, l) · · · VM (k, l)]T contains all additive acoustic noise
components. It is assumed that the analysis window is longer
than the channel impulse responses. For the sake of simplicity,
we omit mentioning the explicit dependence on the frequency,
k, in our following notations since all our processing is done
frequency-bin-wise.

It is known that speech signals are sparse and “only a
small percentage of the time-frequency coefficients in the Gabor
(STFT, in particular) expansion of speech capture a large per-
centage of the overall energy” [4]. Furthermore, it was estab-
lished that it is very unlikely that the major energy components
of different simultaneously active speech signals overlap in the
t-f representation [4, 5]. It is, then, reasonable to assume the dis-
jointness (or approximate disjointness in a less restrictive sense)
of the STFT components of speech signals [4].

Now, to track the dominance of each of the N speech sources
within the observed mixtures, we define the hidden variable, H.
Following the discussion above, H can take N +1 discrete states
denoted as H1, ...,HN ,HN+1: in state Hn, n = 1, ..., N , the
nth speaker dominates the mixture while in stateHN+1, the noise
is dominant. Next, we use the shorthand notation p [Hn|y(l)]
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instead of p [H = Hn|y(l)] for the posterior probability that the
nth signal dominates the mixture, which plays a fundamental role
in the proposed framework.

3. MMSE-BASED MULTI-SOURCE/MULTICHANNEL
FILTER

Our objective is to design an MMSE-based filter that extracts the
nth speech source up to some frequency-dependent scalar coef-
ficient. Since we are only interested in BSS and noise reduc-
tion, we define our objective as extracting S̃n(l) = X1n(l) =
H1nSn(l), n = 1, ..., N . In other words, we consider the

MMSE solution ˆ̃Sn(l) = E {X1n(l)|y(l)} which is written as
ˆ̃Sn(l) = p [Hn|y(l)]E {X1n(l)|y(l),Hn}+ En(l) (2)

where En(l) =
∑N+1

n′=1,n′ �=n
p [Hn′ |y(l)]E {X1n(l)|y(l),Hn′}.

Empirically, we found that setting En(l) ≈ 0 does not affect
much the estimation accuracy of the sources1. We assume that
all signals’ complex spectra are Gaussian. Hence, solving for
the expectation term on the right-hand side of (2) amounts to
looking for the linear filter that minimizes the quadratic error

E
{∣∣wHy(l)−X1n(l)

∣∣2}, defined for a variable w, which

is known to be the Wiener filter. By defining the undesired
signals covariance matrix as Run = Ryy − Rxnxn

where
Ryy = E

{
y(l)yH(l)

}
and Rxnxn

= E
{
xn(l)x

H
n (l)

}
, the

Wiener filter can be modified by emphasizing or de-emphasizing
the suppression of the undesired signals [7]

w
(λ)
n =

R−1
un

Rxnxn
u1

λ+ trace
(
R−1

un Rxnxn

) , (3)

where u1 = [1 0 ... 0]T and λ ≥ 0. λ = 1 and 0 correspond to
the traditional Wiener filter and MVDR, respectively. Finally, the
nth source estimate depends on λ and is given by

ˆ̃S(λ)
n (l) = p [Hn|y(l)]w

(λ)H
n y(l). (4)

To implement (4), we need to estimate p [Hn|y(l)] as we will
show in Section 4. Besides, Ryy can be directly obtained from
the microphone observations and the estimation of Rxnxn

will
be detailed next.

Statistics Estimation: the covariance matrix of the recorded
mixtures of sounds, Ryy =

∫
y
yyHp (y) dy, can be estimated

as R̂yy = 1
T

∑T

l=1 y(l)y
H(l) using a block of T data samples.

Now, to estimate the desired and undesired signals’ statistics, we
decompose the covariance matrix of the observations as Ryy =∑N+1

n=1 Rn, where

Rn =

∫
y

yy
Hp (Hn|y) p(y)dy. (5)

RN+1 corresponds to the noise covariance matrix (i.e., RN+1 =
Rvv) if we assume that the noise is stationary enough –which is
commonly the case (see [7] and references therein, for instance)–
and neglect the presence of speech when the noise dominates the
observed mixture. For n = 1, ...N , the nth marginal term is
given by

Rn = Rvv +Rxnxn
, (6)

meaning that Rn is to the covariance matrix of the noise plus
the nth speech source. Now, it is clear that the multi-speaker ac-
tivity detection and tracking (i.e., the estimation of the posterior

1This can also be theoretically justified since the energy of the nth
speech signal dominates when Hn is verified.

probabilities of H1, ...,HN+1) is critical to the utilization of the
MMSE to perform joint BSS and noise reduction. Having these
posterior probabilities at one’s disposal, it becomes possible to
calculate the following in practice: (i) the noise covariance ma-
trix Rvv, which is empirically well approximated as

R̂vv =
1

T

T∑
l=1

y(l)yH(l)p [HN+1|y(l)] (7)

and (ii) the nth source covariance matrix Rxnxn
for n =

1, ...N , which is empirically well approximated as

R̂xnxn
=

1

T

T∑
l=1

y(l)yH(l)p [Hn|y(l)]− R̂vv. (8)

4. POSTERIOR PROBABILITY ESTIMATION

To estimate p [Hn|y(l)], n = 1, ..., N + 1, we first recall that
the vector of observations bears two types of information: the de-
sired speech spectra and the spatial information (propagation en-
vironment, source location, and array geometry). In our work, we
assume that both types of information can be captured by a scalar
and a vector variables denoted asY(l) andψ(l), respectively, and
we have p [Hn|y(l)] = p [Hn|ψ(l),Y(l)] , n = 1, ..., N + 1.
By defining Qn(l) = p [ψ(l)|Hn] and Pn(l) = p [Y(l),Hn], we
can demonstrate that [9]

p [Hn|ψ(l),Y(l)] =
Qn(l)Pn(l)∑N+1

n′=1 Qn′(l)Pn′(l)
. (9)

Here, it is important to point out that in contrast to [6, 9], we
further include the noise contribution to the observed mixtures of
sounds in the computation of the posterior probabilities.

4.1. Using the Spatial Cue

In [6], it was demonstrated that the spatial information of the
source can be captured using the normalized vector

ψ(l) =
y(l)

‖y(l)‖
. (10)

Indeed, when the nth source is dominant, we have ψ(l) ≈
hn

‖hn‖
Sn(l)
|Sn(l)|

, thereby meaning that ψ(l) is located within the
vicinity of the steering vector of the source up to a certain com-
plex scaling term (the effect of additive noise is investigated ex-
perimentally). The distribution ofψ(l) can be well approximated
by a complex Gaussian-like density function [6]

p [ψ(l)|Hn] =
1

(πσ2
n)

M−1
exp

[
−

∥∥ψ(l)− [aH
n ψ(l)]an

∥∥2

σ2
n

]

(11)
an is the centroid with unit norm of the nth cluster and σ2

n is the
variance. A similar model can be forced for the normalized noise
model. Hence, the density function of ψ(l) is

p [ψ(l)|θ] =
N+1∑
n=1

αnp [ψ(l)|Hn] (12)

where θ = {a1, σ1, α1..., aN+1, σN+1, αN+1},
∑

n
αn =

1, and 0 ≤ αn ≤ 1. We can demonstrate that [6],
in an iterative EM scheme, for a given old estimate θ′ and
n = 1, ..., N + 1, an corresponds to the maximum eigen-
vector of the matrix R =

∑T

l=1 p [Hn|ψ(l), θ
′]ψ(l)ψH(l),

σ2
n =

∑
T

l=1 p[Hn|ψ(l),θ′]‖ψ(l)−(aH

n
ψ(l))an‖

2

(M−1)
∑

T

l=1
p[Hn|ψ(l),θ′]

, and αn =

1
T

∑T

l=1 p [Hn|ψ(l), θ
′] . Qn(l) is computed as in (11).
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4.2. Using the Spectral Cue

In this section, we further take advantage of the spectral informa-
tion by defining

Y(l) = log
[
‖y(l)‖2 /M

]
. (13)

Note that the averaging operation over the M observations flat-
tens the reverberant channel and reduces the additive noise. It is
common to model the distribution of the log-spectra of speech,
S(l), using a GMM, i.e.,

p [S(l)] =
G∑

i=1

γiβi [S(l)] (14)

where G is the number of Gaussian components, βi [S(l)] =
N

(
S(l), μi, σ

2
i

)
, and (γi, μi, σ

2
i ) are trained off-line. Here

we assume that we have a single model for all speech log-
spectra even though different models can be used if the sig-
nals are taken from different databases. The cumulative dis-
tribution function (CDF) of the ith Gaussian component is de-
noted as Ψi (x) =

∫ x

−∞
βi (s) ds. Furthermore, we model

the noise log-spectrum using a single Gaussian, β(N+1) (·),
with mean μv and covariance σ2

v . The noise CDF is denoted
Ψ(N+1) (·). In contrast to (μi, σ

2
i ) which are estimated using a

training data set, (μv, σ
2
v) are obtained from the observed data

by assuming that we have a primary estimate of p [HN+1|y(l)]

and computing μv = 1
T

∑T

l=1 p [HN+1|y(l)]Y(l) and σ2
v =

1
T

∑T

l=1 p [HN+1|y(l)]Y(l)2 − μ2
v .

To have a tractable formulation, it is convenient to con-
sider the most significant Gaussian component of the speech log-
spectra. For the nth source, this index is denoted i(n) and its
selection from the G possible values will be detailed next. Using
the log-max model as in [9], it is possible to demonstrate that a
good approximation of the sound mixture distribution when the
nth speech signal, n = 1, ..., N , is dominating is given by2

p
[
Y(l),Hn|i

(n)
]
= βi(n) [Y(l)] Ψ(N+1) [Y(l)]

N∏
n=1
n′ �=n

Ψ
i(n

′) [Y(l)]

(15)
and p [Y(l),HN+1] = β(N+1) [Y(l)]

∏N

n=1 Ψi(n) [Y(l)]. Now,
to select the most significant Gaussian index of the nth source,
i(n), we have to maximize the following likelihood function [9]

L(n)(i) = p [Hn|y(l)] log (βi [Y(l)]) (16)

+(1− p [Hn|y(l)]) log (Ψi [Y(l)]) + log [p(i)] .

Finally, we implement our algorithm that combines all steps
described above as: (a) use the approximation p [Hn|y(l)] ≈
p [Hn|ψ(l)] = αnQn(l)/p [ψ(l)|θ] as in [6, 8] to determine
some initial estimates of the N +1 posterior probabilities, (b) for
n = 1, ..., N , find the Gaussian component that maximizes the
likelihood function in (16), (c) update the noise statistics using

p [HN+1|y(l)], (d) for n = 1, ..., N , calculate p
[
Y(l),Hn|i

(n)
]

and p [Y(l),HN+1], set Pn(l) ≈ p
[
Y(l),Hn|i

(n)
]

then calcu-

late (9), (e) iterate few times steps (b) to (d).

5. EXPERIMENTAL RESULTS

We implement the proposed method to separate two speech sig-
nals in a reverberant and noisy environment. We investigate two
methods to estimate the posterior probability: using only the

2In contrast to [9], we further include the noise in this model.

space information, i.e., assuming p [Hn|y(l)] = p [Hn|ψ(l)] as
we proposed in [8] and using both the space and spectrum infor-
mation, i.e., assuming p [Hn|y(l)] = p [Hn|ψ(l),Y(l)]. Both
posteriors are then combined with the MVDR and Wiener filters
leading to the L-MVDR, L-Wiener, LS-MVDR, and LS-Wiener
(L stands for location-based and LS stands for location-and-
spectrum-based), respectively. The resulting four filters are com-
pared to a very robust implementation of an ICA-based algorithm
combining the FastICA and InfoMax algorithms (using higher-
order statistics) [1, 2, 3]. We also implement the masking-based
method in [6]. The results are given in terms of output signal-
to-noise ratio (SNR), signal-to-interference ratio (SIR), signal to
artificial distortion ratio (SAR), signal to distortion ratio (SDR)
[10] and the perceptual evaluation of speech quality (PESQ).

In our experiments, we have 3 data sets each consisting of
10 pairs of speakers (30 combinations in total) from the test set
of the TIMIT database: two female speakers, two male speak-
ers, and one male and one female speakers. The speech signals
are convolved with actual measurements of acoustic impulse re-
sponses which are measured using a uniform circular array of 16
microphones with radius r = 0.15 m in a reverberant room with
T60 = 0.31 s. Both speakers are located on the same plane at
a distance 2 m away from the microphone array center and with
an angular separation of 160 degrees. Segments of babble noise
taken from the noisex database [11] are added to each of the mi-
crophone signals. The long-term input SIR at every microphone
is approximately 0 dB while the noise segments are added at dif-
ferent SNR values as specified below. To exploit the spectral cue
of the speech sources, we train a GMM of G = 256 components
using the training set of the TIMIT database. The 16 microphone
recordings are chopped in 64 ms-long frames with 50% overlap
and processed by all methods.

−5 0 5 10 15 20 25
−4

0

4

8

12

16

20

24

28

32

36

40

44

Input SNR [dB]

O
ut

pu
t S

N
R

 [d
B

]

LS−MVDR
LS−Wiener
L−MVDR
L−Wiener
ICA
Masking
Noisy mixture

Fig. 1. Output SNR comparisons at different input SNR levels.

In Fig. 1, we see that the proposed MMSE-based filtering ap-
proaches (L-MVDR, L-Wiener, LS-MVDR, LS-Wiener) remark-
ably outperform the ICA and Masking. The reason is that the
noise contribution is accounted for when extracting the speech
sources and the space information is optimally exploited by the
MMSE criterion. We also notice that by including the spectral
information, the noise suppression becomes more significant as
compared with the case where only the space information is used
for posterior estimation. However, as we can see from Fig. 2,
LS-MVDR and LS-Wiener achieve a slightly lower output SIR.
In Fig. 3, we see that the new MMSE-based approaches outper-
form the ICA. We also observe that by using the spectral infor-
mation in the computation of the posterior probabilities, we can
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Fig. 2. SIR comparisons at different input SNR levels.
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Fig. 3. SAR comparisons at different input SNR levels.

reduce the level of speech distortion, especially with the MVDR
filter. The same remarks hold for the output SDR as it is shown
in Fig. 4. Finally, we can conclude from Fig. 5 that by using the
proposed processing, even with the space information only, it is
possible to achieve higher quality of the filtered speech signals.
Our informal subjective evaluations corroborate this fact.

6. CONCLUSION

In this paper, we proposed a new multichannel MMSE-based
framework for joint BSS and noise reduction. We demonstrated
that it is possible to track the activities of multiple speakers using
both spatial and spectral information contained in the recorded
sound mixtures. Then, we estimated the posterior probabilities
describing the activities of the speakers in an EM framework and
used these probabilities to compute all statistics required to im-
plement the MMSE-based estimator of every speech source. Our
experiments demonstrated that our method performs remarkably
well in reverberant and noisy environments.
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