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ABSTRACT
This paper deals with phase estimation in the framework of under-
determined blind source separation, using an estimated spectrogram
of the source and its associated Wiener filter. By thresholding the
Wiener mask, two domains are defined on the spectrogram : a con-
fidence domain where the phase is kept as the phase of the mixture,
and its complement where the phase is updated with a projection
similar to the widely-used Griffin and Lim technique. We show that
with this simple technique, the choice of parameters results in a sim-
ple trade-off between distortion and interference. Experiments show
that this technique brings significant improvements over the classical
Wiener filter, while being much faster than other iterative methods.

Index Terms— Phase reconstruction, Spectrogram, STFT,
Blind source separation, Wiener filter

1. INTRODUCTION

High-quality audio blind source separation, in the underdetermined
case (more sources than sensors), is a very active and challenging
topic. The separation itself often takes place in a domain where
sources are sparse, usually in a time-frequency (TF) domain. The
most popular choice of time-frequency transform is arguably the
Short Time Fourier Transform (STFT), defined as:

S(m, n) =

L−1X
k=0

w(k −mR)s(k)e−2jπnk/N ,

where s ∈ R
L is the analyzed signal, w is the analysis window

of support size L samples and window shift R samples, and N is
the number of frequency bins. S(m, n) is then a complex array of
size (MxN) with Hermitian symmetry in frequency around N/2. For
a well-chosen synthesis window, the STFT can be exactly inverted
with standard overlap-add techniques. We denote STFT−1 this in-
verse operator, so that s = STFT−1(STFT (s)). Because STFTs
are redundant representations, not every set S ∈ C

M×N , with the
same Hermitian symmetry, represents a signal. For S to be a so-
called consistent STFT, it must also verify the consistency equation:

S − G(S) = 0 (1)

Where the function G(S) = STFT [STFT−1S] generates a con-
sistent STFT from any set of complex values.

Consider the linear instantaneous mixture x =
P

i si of I
sources. Source separation techniques try to estimate the individual
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sources si from the mixture. However, many of the more power-
ful methods, such as Non-negative Matrix Factorization (NMF [1]),
only estimate the magnitude spectrogram Wi (the energy) of every
source i in the time-frequency domain. This raises the following
issues: (i) Only the source energy contribution to the mixture is
known, and (ii) the phase of the source’s TF distribution is unknown.

In order to tackle these problems, many solutions have been pro-
posed, the best solution in the mean square sense being the widely
used [2] Wiener Filtering. It masks the STFT of the mixture M with
the real, positive coefficients αi(m, n) such that :

αi(m, n) =
Wi(m, n)P
k Wk(m, n)

Then, the estimated STFT of the source Ŝi(m, n) is computed as

Ŝi(m, n) = αi(m, n)X(m, n). This involves that the signal is re-
constructed using the phase of the mixture. Wiener filter is mainly
based on the separation of the sources in the spectral domain. When
overlapping between sources increases, the reconstruction quality of
the Wiener filter decreases. One solution to improve reconstruction
quality, proposed by LeRoux et al. [3], is to constrain the estima-

tion of Ŝi so that it satisfies the consistency constraint of equation
(1) as well, at least approximately. However, this technique, called
"consistent Wiener filtering" requires a careful balance between two
terms, the Wiener filtering and the consistency, that must be dynam-
ically updated throughout a sometimes large number of iterations.
When the number of sources becomes large, and hence the overlap
between sources increases, the tuning of these control parameters
can become tricky.

In this paper, we resort to a somehow simpler method, where
the parameters do not have to be adjusted on-line, and that therefore
comes with a guaranteed small complexity. It is based on the popular
phase reconstruction algorithm of Griffin and Lim (hereafter referred
to as G&L [4]), here improved by a constraint based on the Wiener
filter. The mechanic of such reconstruction will be discussed and
compared to the "consistent Wiener filtering" both in terms of qual-
ity and complexity. It should be noted that for the sake of clarity
and compactness, we present in this paper only the offline version of
our algorithm (processing the signal as a whole), but the proposed
modification can also be transposed to the newest real-time imple-
mentations [5, 6]. Note that related work [7] also uses a constrained
version of G&L, however within a different framework.

The paper is organized as follows: we will first introduce the
principle of iterative STFT phase reconstruction and the constrained
Wiener filtering technique in the state of the art section 2. In section
3, we present our method and the experimental setup in section 4.
We discuss the results in section 5 prior to the conclusion.
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2. STATE OF THE ART

2.1. Iterative phase reconstruction

The consistency function given in equation (1) is used by the phase
reconstruction algorithm proposed by G&L [4]. This technique aims
at reconstructing the signal s while only knowing its spectrogram
W = |S|2. It computes the STFT S̃ which has the closest magnitude
to the original spectrogram in the mean square sense. This method
performs the update of equation (2) at each iteration k, applying both
the consistency function G and a magnitude constraint.

S̃(k) = G(|S|ei∠S̃(k−1)
) (2)

This simple method provides time-domain signals with good sound
quality, although often with artifacts such as echo, smearing and
modulations. However, its convergence is often painfully slow.
Some recent studies [5, 6] significantly increased the speed of con-
vergence, even allowing real-time online processing.

Unfortunately, this technique is not adapted, as such, to the
source decomposition problem. Actually, since the estimated source

STFT amplitude |Ŝ| is obtained by Wiener filtering, it does not rep-
resent the source S well enough to allow the method to convergence
toward an optimal solution, as observed in [3]. Moreover, G&L min-
imization has a tendency to catch local minima such as translation or
local inversion of the signal. See [8] for a complete state of the art.

2.2. Consistent Wiener filtering

The idea of combining Wiener filtering and consistency of the esti-
mated spectrograms emerged in [3]. This method uses a consistency
constraint while estimating a Wiener-like filter and is called Consis-
tent Wiener filtering. This method uses an update of the form:

Ŝ
(p+1)
i ←

XP
k �=i Wk

+ γG(Ŝ(p)
i )

1
Wi

+ 1P
k �=i Wk

+ γ
(3)

Where Ŝi is the estimated source STFT and Wi is the spectrogram
of the ith source. The parameter γ (0 ≤ γ) weights the consistency
constraint: γ = 0 is the standard Wiener estimate, while γ → ∞
only enforces consistency. Setting this γ parameter is indeed crucial:
we use the procedure given in [3] to dynamically update γ through-
out the minimization process.

3. PARTITIONED PHASE RETRIEVAL

This paper proposes an alternative method for estimating the phase
of the Wiener-filtered spectrogram |αiX|2, while not modifying the
amplitude. It is therefore closer to G&L’s approach of the problem
than consistent Wiener filtering. We will show that despite previ-
ous evidence, we can increase the source reconstruction quality with
G&L by adding additional constraints.

Indeed, the G&L algorithm only constrains the magnitude of
the STFT to be reconstructed. This can lead to local minima by
the lack of phase information, but the Wiener filter does give addi-
tional information on the phase representation. Since the values of
αi(m, n) ∈ [0, 1], the closer it is to 1, the closer is the mixture bin
X(m, n) to the original source bin Si(m, n), and so their respective
phase. Therefore, one can decide of a confidence domain Ωi:

Ωi = {(m, n)|αi(m, n) > τ} (4)

Fig. 1. Illustration of the confidence domain of the Wiener filter, on
one frame m0 of the spectrogram. Top : spectrogram amplitude of
both sources, middle : coefficients α1(m0, n) of the Wiener mask
for source 1, bottom : estimated spectrum of source 1, showing val-
ues where the mixture phase is kept (plain line), and values where
phase is estimated through the G&L algorithm (dashed line).

The bins selected in Ωi are mainly the bins of higher spectral energy
of the source i. We consider that the phase value of each bin con-
tained in Ωi can be constrained as an accurate phase estimation of
the target signal. This is especially true for harmonic sounds that are
sparsely represented on the frequency axis, or percussive sounds that
are sparsely represented on the time axis. Therefore the idea is not
only to force the magnitude of the STFT, but also the phase of the
Ω bins. This principle is presented on figure 1, where the energy of
two sources is shown on top, the Wiener filter for source 1 is shown
in the middle with the threshold τ , and the two different domains are
shown at the bottom on the estimated Wiener spectrum.

As noted before, the estimated spectrogram Wi is not consistent:
it does not correspond to the squared magnitude of the real source

STFT Si. Therefore, the “oracle” solution for the phase ∠Ŝi = ∠Si

does not lead to a perfect estimation of the source, but rather to the
ideal phase reconstruction of our proposed method. Throughout the
experiments we will refer to this solution as the "optimal" solution.

The method proposed here is to use Ωi as a confidence domain
in order to constrain the phase of the STFT. However, we also wish to
enforce coherence of the STFT, as in [4, 6], and we use the function

G previously defined. At the initialization stage, the STFT S̃
(0)
i of

the i-th source we are looking for is estimated as the Wiener estimate

of the source: S̃
(0)
i = αX

Then, for each iteration k we update S̃i with :

S̃
(k+1)
i =

8<
:
|αiX|ej∠G(S

(k)
i ) for (m, n) /∈ Ω

αiX for (m, n) ∈ Ω

(5)

This process is repeated for a small number K of iterations: because
this algorithm is initialized to the Wiener estimate of the source, the
first step is already close to the optimum solution and therefore few
iterations are necessary. The increase in quality can therefore always
be relatively modest, but it is consistently positive.

This algorithm depends on two parameters: the threshold τ used
on the Wiener mask to define the domain Ωi, and the number K of
iterations. Their influence can be shown on figure 2, on a mixture
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Fig. 2. Effect of the threshold τ and of the number K of iterations
on SDR and SIR, on a speech mixture. The black cross indicates
the choice of parameters used in the experimental evaluation. The
G&L method and the standard Wiener filtering are also indicated, as
special cases.

of two speech signals from the TIMIT database sampled at 16kHz
for a window size of 1024 samples and 50% overlap. We analyze
two objective quality criteria: the Signal to Distortion Ratio (SDR)
and the Signal to Interference Ratio (SIR) from the bss eval toolbox
[9]. As illustrated on figure 2, the higher τ , the higher the iterations,
the better the SIR but not the SDR. Only optimizing the SDR leads
to an optimum value of τ = 0.65 and K = 8 iterations. This can
be understood as follows: the SDR is the spectral distortion between
the target source S and the estimated source S̃. In fact, the mini-
mization we propose does not recover the real source: it estimates
the most consistent phase pattern that suits to the STFT amplitude of
the Wiener filter and some selected phase bins of the mixture. Be-
cause the target spectrogram |αiX|2 is not consistent, and because
the G&L algorithm naturally presents issues preventing convergence
(stagnations [8]), improving the number of iterations does not nec-
essarily improve the distortion, but it can still improve the interfer-
ences. Those stagnations can augment the absolute error between
the reconstructed source and the original while only marginally low-
ering the perceptual quality.

When τ is too close to 1, there is not enough information to
constrain the reconstruction (we get close to the classical G&L) and
when τ gets close to 0, we get actually closer to the original Wiener
solution. As a tradeoff between SIR and SDR, we arbitrarily choose
τ = 0.8 and K = 10 iterations. This allows very fast computation
as we will see in the experiments of the next section. It should be
emphasized that these experiments show that the results do not de-
pend strongly on the exact values of the parameters ; these can be
fixed once and for all depending on the desired SIR/SDR tradeoff.
Note that the signals used for this parameter tuning were different
from the ones used for the more extensive tests of the next section.

4. EXPERIMENTAL EVALUATION

Following the methodology in previous research, we tested this
method in oracle conditions, with perfect knowledge of the energy
of each sources composing the signal. We test music mixtures in the
form of monophonic linear instantaneous mixes of 4 to 5 sources.
We used three different extract of 10 to 15s length (a piece of Elec-

Fig. 3. Average separation performances for the three methods, on
a mono mixture of 5 musical sources: upper bound with the optimal
phase (“optimal”), Consistent Wiener, and the proposed method. All
results are differential, in comparison to the baseline Oracle Wiener
filter. Computation times are also given.

tro Jazz, Roxanne from the group Police and Call Me from the group
Blondie) containing various instruments.

In order to assess our results we used the three objective cri-
terions : SDR and SIR presented before, an the Source to Artifact
Ratio (SAR). Because we use the Wiener filter as a reference, we
will mainly display improvements of each methods, for this we use
ΔSDR, ΔSIR and ΔSAR. The three values are defined as the
mean improvement over the Wiener filter estimate for each source.
Figure 3 shows the results of the experiment in the form of the mean
improvement over the Oracle Wiener filter. We compare the pro-
posed method to the solution where the phase is perfectly known
("Optimal"), and to the consistent Wiener filtering (Cons. Wiener)
detailed in section 2.2 with all parameters as described in [3], includ-
ing the number of iterations. In order to evaluate the effect of the re-
dundancy and stationarity assumption of the TF representation, we
test two window lengths and two overlap values (N/R). Separation
enhancement are also compared to the respective computation time
on figure 4 for the N=2048, N/R=2 case. Times are given in second
of CPU time per second of signal. A demo page1 allows audition of
selected reconstructed samples.

5. DISCUSSION

The first striking result is the net gain on the SIR in comparison
to both the Wiener filter solution and the consistent Wiener filter
solution. This is a key point: we show here that it is possible to
lower interferences from other sources by simply adjusting the phase
profile of the estimated source STFT at a very small computational
cost. Compared to classical Wiener filtering, the proposed method
also performs better on the distortion and artifact components, but to
a lesser extent. Optimal results show the upper limit of the Wiener-
based phase reconstruction approach, due to the artifacts present in
the magnitude STFT of each source.

No method really benefits from higher temporal overlap of the
TF representation. When the overlap increases, the number of coef-
ficients per time frame of the signal increases, but those coefficients

1http://nicolas.sturmel.com/ICASSP12
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Fig. 4. Computation time in seconds of CPU per second of signal
for a 15s music extract (Electro Jazz - 5 sources) for the Consistent
Wiener, the classical G&L reconstruction, and our proposed method.
Both ΔSIR and ΔSDR are given in reference to the separation
performance of the classical Wiener filter estimate of each source.

are still badly estimated by the Wiener filter. In this case, more re-
dundancy in the TF representation does not bring any new informa-
tion useful for the reconstruction.

It has been shown in [8] that G&L was prone to catch local min-
ima, especially because of the fundamental sign invariance of the
solution (x or -x are equally valid solutions). This is especially true
for "local" patches of the TF representation where no phase informa-
tion is constrained. Therefore, G&L can improve the SIR and create
artifacts at the same time: the reconstructed phase profile can be as
far as the original signal (lowering the SAR) as it is far from the
other sources (increasing SIR). Our method partially corrects this.

Auditory inspection of the separation as is possible on the demo
page, shows that despite more audible artifacts than the consistent
Wiener filtering, interferences are clearly lowered by our method.
Lowering the interferences can sometimes be more important than
lowering artifacts, especially when compensating those artifact with
a remixing constraint as in [7].

At its best results, the proposed method is 7 to 10 times faster
than the consistent Wiener filtering, because we perform much less
iterations, with a lower complexity per iterate. In the proposed algo-
rithms, both parameters are fixed so that we did not have to resort to
ad-hoc adjustments needed on γ for the consistent Wiener. On figure
4 one can see that for a similar computation time, our method always
outperforms the consistent Wiener filtering in terms of SIR, but also
outperforms in terms of SDR for small computation times below 0.3
second of CPU per s. of signal. This makes our method best suited
to real time implementations. In confirmation of [3] we can observe
that for a higher number of iterations the simple G&L reconstruction
generates a lot of artifacts (ΔSDR < 0 with ΔSIR > 0), more
than it improves the interference. The key point of our method is
then to provide similar improvements in interference rejection than
G&L while generating much less artifacts, actually improving the
Wiener estimation in every way.

6. CONCLUSION

A new method enhancing the source separation in the spectrogram
domain has been presented, based on the Griffin and Lim phase

reconstruction. This method adds an additional constraint on the
bins using a thresholded Wiener filter: the phase is trusted at time-
frequency bins where the Wiener mask is high, and estimated else-
where. The corresponding algorithm can be easily parametrized ac-
cording to the desired balance between SIR and SDR.

Results show that this approach consistently increases a plain
application of the Wiener filter. The results are somewhat similar
to those obtained by the Constrained Wiener filtering from LeRoux
et al. [3]: the Constrained Wiener appears slightly better on SAR,
and the proposed method is slightly better on SIR. However, the new
approach has two important benefits. Firstly, it does not require a
dynamical update of the parameters, which makes it suitable for a
wider variety of test cases without ad-hoc tuning, especially in the
case of a high number of sources leading to higher spectral over-
lap. Secondly, since the parameters are fixed, only a few iterations
are necessary to get good results: the computational cost of this al-
gorithm can be kept very low without sacrificing the output quality.
Note that embedding the Wiener filter with the mixture to allow ac-
tive listening is already done in [10]. Such method could benefit of
such real-time ready separation enhancement.

Future work will focus on two key points: first, the adaptation
of the algorithm to a real-time framework described in [5]: the low
computational cost should easily allow the algorithm to run in real
time. Then, the performance of this algorithm should be assessed
for real (non-oracle, or only partially informed) source separation
problems including perceptual evaluation.
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