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ABSTRACT

In this paper, we propose a semi-supervised algorithm based on
sparse non-negative matrix factorization (NMF) to improve sepa-
ration of speech from background music in monaural signals. In
our approach, fixed speech basis vectors are obtained from training
data whereas music bases are estimated on-the-fly to cope with spec-
tral variability while preserving small NMF dimensionality for de-
creased computation effort. In a large-scale experimental evaluation
with 168 speakers from the TIMIT database, we compare the semi-
supervised method to supervised NMF with an explicit background
music model. Our results reveal that the semi-supervised method
outperforms supervised NMF at low speech-to-music ratios, and that
sparsity constraints on the music spectra to enforce harmonicity can
improve separation performance.

Index Terms— non-negative matrix factorization, supervised
source separation, speech enhancement, sparse coding

1. INTRODUCTION

Separation of speech overlaid with music in monaural signals re-
mains a challenging problem, especially due to the large similar-
ity between voiced (harmonic instruments, vowels) and unvoiced
(drums, consonants) parts. On the other hand, robust suppression
of background music can be immediately exploited in a variety
of applications, comprising speech enhancement for in-car human-
machine interfaces or mobile telephony in highly noisy environ-
ments such as discotheques, speech recognition for multimedia in-
formation retrieval in TV series or on-line videos, or even lyrics tran-
scription of rap/hip-hop music.

It is only recently that first promising results for monaural back-
ground music suppression have been obtained in [1], indicating that
non-negative matrix factorization (NMF) is a promising approach
to ensure intelligibility of the extracted speech signal. A more com-
prehensive evaluation has been carried out in [2], using an exemplar-
based approach based on supervised NMF, that is, predefining a large
set of base (speech and music) spectra extracted from training data
whose non-negative activations in the test signal are found by an
iterative algorithm; then, an estimate of the clean speech signal is
obtained from the product of speech spectra and their activations.
Still, it is unknown whether information about the music signal as in
fully supervised NMF is required for optimal separation.

Hence, in this paper, we consider a semi-supervised variant of
NMF [3] where only speech spectra are pre-defined, whereas the
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music bases are not characterized a priori, in order to cope with vari-
ability of the music over time, as in [1]. We compare the semi-
supervised method against an ‘upper bound’ for the performance of
(supervised) NMF where music bases are estimated from parts of
the ground truth music, and evaluate the influence of sparsity con-
straints. Unlike [1], we enforce sparsity constraints on the NMF
activations—similar to the algorithm proposed in [4]—to improve
discrimination of speech and music bases, and extend this algorithm
to sparse spectral bases in order to model harmonicity of music spec-
tra. In this study, we use a rather small set of speech basis vectors for
initialization that are learnt from training data by NMF, to vastly de-
crease computational effort compared to exemplar-based approaches
such as [2]. A speaker-dependent scenario with 168 speakers from
the TIMIT database is chosen for evaluation, and different music
styles are investigated. Methods for semi-supervised sparse NMF
are outlined in Section 2; details on experimental setup and results
are given in Section 3 before concluding in Section 4.

2. NMF-BASED METHODS FOR MUSIC SUPPRESSION

2.1. Signal Model

Our approach for music suppression in monaural speech recordings
is based on the assumption that speech is ‘corrupted’ by addition of
background music:

V = V(s) +V(m),

where V ∈ R
M×N
+ is an observed magnitude spectrogram of speech

overlaid by music, V(s) is the (true) spectrogram of the speech sig-
nal, and V(m) is the (true) music spectrogram. Furthermore, we
assume that both, the speech and noise spectrograms can be approx-

imated as linear combinations of base spectra (dictionaries) w
(s)
j ∈

R
M
+ , j = 1, . . . , R(s), respectively w

(m)
j , j = 1, . . . , R(m), with

non-negative coefficients (activations) H(s) ∈ R
R(s)×N
+ , H(m) ∈

R
R(n)×N
+ . Defining

W(s) = [w
(s)
1 · · · w(s)

R(s))]

and W(m) analogously, this signal model can be written in matrix
notation, where Λ, Λ(s) and Λ(m) denote approximations of V,
V(s) and V(m), respectively:

Λ = Λ(s) +Λ(m) = W(s)H(s) +W(m)H(m),

or Λ = WH for W := [W(s)W(m)], H :=

[
H(s)

H(m)

]
.
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2.2. Supervised and Sparse Semi-Supervised NMF

In the remainder of this paper, we assume that the speech ‘basis’
W(s) is fixed after estimation from training data. More precisely, it
is computed by reducing a set of training utterances through NMF, as
proposed, e. g., in [5]. A fully supervised NMF approach for back-
ground music suppression, in analogy to [3, 5], is obtained when
a similar procedure is followed for the music basis W(m) as well.
In that case, the speech enhancement problem is reduced to finding
non-negative coefficients (activations) H(s) and H(n). In the pro-
posed semi-supervised approach however, W(m) is estimated along
with H(s) and H(n) such that the following cost function is mini-
mized:

c(W(m),H) = cr(W
(m),H)

+ λ cHs (H(m)) + μcWs (W(m)) (1)

where cr corresponds to the reconstruction error as β-divergence
dβ(V|Λ) for β = 1 (Kullback-Leibler divergence) and

cs(H
(m)) =

R(m)∑
j=1

1

σ(H
(m)
j,: )

N∑
t=1

H
(m)
j,t

cs(W
(m)) =

R(m)∑
j=1

1

σ(W
(m)
:,j )

M∑
k=1

W
(m)
k,j .

λ and μ are free parameters (0 ≤ λ, μ � 1), and σ(W
(m)
:,j ) and

σ(H
(m)
j,: ) are standard deviation estimates for the j-th column of

W(m) and the j-th row of H(m), respectively that are introduced to
avoid dependency on the scaling of the matrices, following [4].

Informally, cs is a sparsity constraint that is only enforced on the
music part: The purpose of imposing sparsity on H(m) is to mitigate
the fact that the algorithm can ‘mis-use’ the bases designated to iso-
late the music for modeling the speech parts; additionally, sparsity on
W(m) is imposed to increase the discrimination between speech and
music, as the latter is arguably characterized by higher harmonicity
compared to speech. Unlike in recent studies that exploit NMF for
speech recognition directly such as [6], the purpose of sparsity is not
to force that only a few basis vectors can be active at a given time:
As the base estimation from training data is entirely unsupervised,
they may largely overlap in their spectral and/or phonetic content.

The cost function (1) is minized by applying component-wise
multiplicative updates to W(m), H(s) and H(m) based on the al-
gorithm proposed in [4]. We straightforwardly extend the algorithm
to the semi-supervised case, including the sparsity constraint for the
spectra W(m) which was not considered in [4], yielding the follow-
ing update rule for W(m) (⊗ denotes the Hadamard product):

W(m) ←W(m) ⊗ ∇c
−(W(m),H)

∇c+(W(m),H)

where ∇+ and ∇− indicate the positive and negative parts of the
gradient, respectively, which in turn are determined by∇c+r (W(m))

and∇c−r (W(m)) as laid out in [4] and

[∇cW+

s (W(m))]i,j =

√
M√∑M

k=1 W
(m)2
k,j

[∇cW−
s (W(m))]i,j = W

(m)
i,j

√
M

∑M
k=1 W

(m)
k,j

(
∑M

k=1 W
(m)2
k,j )3/2

The update rules are applied for 100 iterations starting from a (Gaus-
sian) random solution. Finally, the estimated clean speech spectro-

gram V̂(s) is obtained by filtering the observed spectrogram V:

V̂(s) =
Λ(s)

Λ
⊗V.

Note that the asymptotic complexity of this algorithm is polyno-
mial (O(RMN)), and linear in each of R := R(s) + R(m), M
and N . This means that especially for applications with real-time
constraints, it is desirable to keep the number of components R as
low as possible at a reasonable separation quality. All experiments
for this paper are based on the NMF implementations found in our
open-source toolkit openBliSSART [7] to enforce reproducibility of
our results.

3. EXPERIMENTAL SETUP AND RESULTS

The aim of our experiments is to evaluate the extraction of the speech
from mixed speech and music audio signals, as well as to determine
the influence of sparsity weights, Discrete Fourier Transform (DFT)
window size and music style.

3.1. Evaluation Data Set

Our evaluation set is formed by 1 680 audio signals (sentences) spo-
ken by 168 different subjects (56 females and 112 males) from the
TIMIT database test set, i. e., there are 10 sentences of typically 2–3
seconds length for each speaker. We chose the TIMIT database for
its rich phonetic content. Each of the TIMIT test sentences is artifi-
cially mixed with a random cut of music of the same length at various
speech-to-music ratios (SMR) from -7.5 dB to +5 dB in intervals of
2.5 dB. These SMRs correspond to typical application scenarios as
indicated in the introduction. To demonstrate performance of our
method on a variety of music styles, the experiment was first carried
out with the 136 Viennese Waltzes from the Ballroom Dance (BRD)
Database [8] as an example for classical music, then it was repeated
with 136 pieces of each of the latin, jazz and rock genres. Note that
these frequently contain segments with sung vocals, which makes
separation of speech particularly challenging.

3.2. Experimental Setup

In all experiments we evaluate by means of a speaker-dependent
cross-validation, i. e., for each TIMIT test sentence all other sen-
tences of the same speaker are concatenated, and their spectrogram
is reduced to a NMF speech basis W(s). As this results in aprox-
imately 20–30 seconds training material for separation of each test
instance, this methodology represents realistic use-cases where the
user adapts the system to his/her voice. For supervised NMF, mu-
sic bases W(m) are computed from a disjoint random section of
25 seconds of the same music track used for mixing the test file—
this yields an upper benchmark on the performance of supervised
NMF assuming the exact characteristics of the music are known
during separation. The NMF dimensionality parameters R(m) and
R(s) were set to 10 and 20, respectively. 20 speech components
have been found to represent a good compromise between separation
quality and computational complexity [5], and the ratio 2/1 for the
speech and music bases was chosen empirically in preliminary ex-
periments. The experiment was repeated for different Hann window
sizes from 8 ms to 512 ms whereas the overlap between consecutive
DFT frames in the time domain remained fixed at 75 %.
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Fig. 1: Average signal-to-distortion ratio (SDR) on TIMIT test
set (1 680 sentences overlaid with waltzes from BRD database) by
sparse semi-supervised NMF (dashed-dotted lines) for SMRs of -2.5
and 0 dB. Variation of the sparsity weights λ for μ = 0 (a), and
of μ for λ = 0 (b). Continuous lines: semi-supervised NMF with
λ = μ = 0, i. e., no sparsity constraints. DFT window size 128 ms.

To assess the characteristics of semi-supervised and super-
vised speech and music separation in detail, we employ signal-to-
distortion ratio (SDR) as a measure of overall separation quality,
source-to-interference ratio (SIR) to quantify suppression of the un-
desired music source (which may however lead to information loss in
the speech signal due to spectral overlap), and source-to-artifact ratio
(SAR) to evaluate degradation of speech quality by the separation.
Measurements were carried out using the open-source BSS Eval
toolkit [9].

3.3. Results

Figure 1 shows the performance in terms of SDR for semi-
supervised NMF when varying the sparsity weight λ for the mu-
sic activations H(m) while keeping the sparsity weight μ for
the music spectra W(m) constant at zero (1a), and vice versa
(1b). In both evaluation scenarios, sparsity constraints slightly—
yet consistently—increase performance by over 0.1 dB absolute at
all SMRs. Overall, the harmonicity constraint (sparsity of W(m))
is most promising. Across SMRs, best results are obtained at
μ = 10−5. We found that using both λ, μ > 0 could not further
improve results. Evidently, this sparsity parameter is highly ‘non-
aggressive’—larger values of μ would probably force a reduction of
the W(m) to single harmonics which is not desirable in the case of
complex music.

Next, Figures 2a and 2b show the results in terms of SDR (indi-
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Fig. 2: Average separation performance on TIMIT test set (1 680
sentences) overlaid with waltzes from the BRD database. Effect of
DFT window size on non-sparse semi-supervised NMF separation
(dashed lines) compared to supervised NMF (continuous lines).

cated by squares), SIR (triangles) and SAR (asterisks) for both su-
pervised and (non-sparse) semi-supervised NMF at SMRs of -5 dB
and 0 dB, respectively for varying window sizes (8, 16, 32, 64, 128,
256 and 512 ms), corresponding to DFT sizes of 128–8192 points.
For both supervised and semi-supervised NMF, the best suppression
(SIR) is achieved at a window size of 128 ms while small window
sizes (< 32 ms) do not enable robust suppression in general. For a
SMR of -5 dB, the semi-supervised method improves SIR by more
than 4 dB compared to the supervised case, boosting the average SIR
to almost 10 dB. At 0 dB SMR the improvement by semi-supervised
NMF is smaller but still clearly visible, achieving over 12 dB aver-
age SIR. In terms of overall quality (SDR), at -5 dB semi-supervised
NMF delivers equal or higher SDR for up to 128 ms window size; at
0 dB, larger window sizes (> 64 ms) decrease the SAR—and hence
the SDR—of the separated speech for semi-supervised NMF. We
conclude that semi-supervised NMF seems to be prone to lose some
speech information at higher SMRs. Since this effect does not oc-
cur for supervised NMF, we argue that larger window sizes help to
create a more precise model of the true music in supervised NMF.

The rather slight effect of using sparsity constraints on the mu-
sic bases deserves some further investigation. Figures 3a through 3d
show how the music genre affects the separation for four different
styles: classical, jazz, latin and rock. The experiments are done using
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Fig. 3: Separation of TIMIT test set (1 680 sentences): Average SDR results for speech overlaid by different music styles, for sparse semi-
supervised (μ = 10−5, λ = 0), semi-supervised (μ = λ = 0) and supervised NMF. DFT window size 128 ms.

a DFT window size equal to 128 ms with sparse (μ = 10−5, λ = 0)
and non-sparse (μ = λ = 0) semi-supervised as well as super-
vised NMF. The results reveal that the improvement by using sparse
instead of non-sparse semi-supervised NMF—i. e., enforcing har-
monicity in the music spectra—is mostly visible for waltz music
with its arguably high degree of harmonicity, while for jazz and rock
music no gains can be observed.

Corroborating the results obtained for speech recognition accu-
racy in [2] on the acoustic level, all methods exhibit highest perfor-
mance for waltz music while results consistently downgrade for the
other styles: On average a loss of almost 2 dB SDR is observed for
jazz compared to waltz music, which can be attributed to the com-
plex harmonic and rhythmic structure of the jazz genre which also
decreases the SDR obtained by supervised NMF; more music com-
ponents could probably increase performance of the latter.

4. CONCLUSIONS

We have presented a large-scale study on performance of semi-
supervised and supervised NMF algorithms for compensation of
background music in speech and have demonstrated the effective-
ness of semi-supervised NMF particularly in highly noisy environ-
ments. Comparing the semi-supervised method to an upper bench-
mark for supervised NMF assuming the characteristics of the music
are known, it is notable that in highly ‘noisy’ conditions, the semi-
supervised method suppresses the music to a larger extent than the
supervised benchmark, in terms of SIR; however, at higher speech-
to-music ratios a decrease in overall quality (SDR) has to be ac-
cepted. We attribute this to the relative simple modeling of speech
by predefined spectral vectors, which can cause information loss in
the reconstructed speech signal since subtleties of speech not mod-
eled by the predefined basis are captured by the iteratively updated
basis vectors designated to contain the background music. By en-
forcing sparsity constraints on the spectra and on the activations, the
performance of semi-supervised NMF could be improved slightly,
but the gain strongly depends on the genre and according complex-
ity of the music signal.

Future work could focus on integration of automatic genre
recognition on the separated music signal in a two-stage separation
algorithm: This enables use of optimal NMF parameterizations for
different genres. Furthermore, the relatively simple speech mod-
eling and factorization constraints in this study could be extended
with more advanced techniques such as temporal dependencies, as
in [10].
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