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ABSTRACT
A new framework for representing quasi-harmonic signals, and its
application to score-informed single channel musical instruments
separation, is introduced in this paper. In the proposed approach,
the signal’s pitch and spectral envelope are modeled separately. The
model combines parametric filters enforcing an harmonic structure
in the representation, with Gaussian modeling for representing the
spectral envelope. The estimation of the signal’s model is cast as
an inverse problem efficiently solved via a maximum a posteriori
expectation-maximization algorithm. The relation of the proposed
framework with common non-negative factorization methods is also
discussed. The algorithm is evaluated with both real and synthetic
instruments mixtures, and comparisons with recently proposed tech-
niques are presented.

Index Terms— Score-informed source separation, single chan-
nel source separation, audio modeling

1. INTRODUCTION

Single channel source separation (SCSS) is a classical problem in au-
dio processing that arises naturally when dealing with musical sig-
nals. In this case, the main goal is to separate the different tracks
corresponding to isolated musical instruments. Although important
advances have been obtained throughout the years, this is still con-
sidered an open and difficult problem, in part due to its high degree
of under-determination. It is then crucial to use all the available
information to constraint instruments’ separation in a meaningful
way. Since musical scores are easily available and provide funda-
mental information about the musical piece, in this work we tackle
the problem of score-informed SCSS in musical pieces [1, 2, 3]. The
information extracted from the scores is used as prior information to
initialize and guide our algorithm.

The decomposition of time-frequency representations, such as
the power spectrogram, in terms of elementary atoms of a dictionary
has become a popular tool in audio processing. In particular, non-
negative matrix factorization (NMF), [4], leads to very good results
in a variety of applications. SCSS via NMF is carried out by decom-
posing the magnitude spectrogram of the mixture signal and then
performing reconstructions of groups corresponding to each single
source. In the fully unsupervised setting, these methods brake down
when the sources have a large time-overlap in the track. A consid-
erable amount of work has been dedicated to add constraints to the
factorization in order to include prior information guiding the chal-
lenging decomposition.

When NMF is applied to quasi-harmonic instrument sounds, the
elementary components that are redundant throughout the piece will
hopefully represent musical notes and thus have an harmonic struc-
ture. However, this cannot be guaranteed. Recent methods have
proposed constraining the atoms to have particular designs follow-
ing prior information about the signal in order to obtain physically
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meaningful atoms, and in particular, to mimic the harmonic structure
present in the spectrograms of musical instruments [3, 5, 6, 7].

The variability in the spectrum of a musical instrument sound
has two main components: the variation of the fundamental fre-
quency and the changes in its spectral envelope. Standard NMF
has shown good results when the characteristics of the sounds are
stationary. In other words, NMF relies in the frame-to-frame redun-
dancy. Slight changes in the fundamental frequency with constant
spectral envelope produce severe changes in the spectrogram. The
same happens when changes in the spectral envelope occur with a
fixed pitch. Classical NMF will likely need several dictionary atoms
to account for this variability, while the nature of these changes is
rather simple.

In this paper we propose a simple model for representing the
magnitude spectrogram of musical instruments that decouples be-
tween the information of pitch and spectral envelope. This allows
to efficiently represent a great deal of variability using very simple
models for each component. Specifically, let V = [v1, . . . ,vN ] ∈
R

F×N be the power spectrogram of a signal containing, for now, an
isolated instrument. We can decompose this as

V ≈ H •E, (1)

where E = [e1, . . . , eN ] ∈ R
F×N is a non-negative matrix

modeling the spectral envelope and its evolution in time, and
H = [h1, . . . ,hN ] ∈ R

F×N is a matrix with entries in the [0, 1]
interval enforcing the harmonic structure through an element-wise
multiplication •. With this representation, changes in pitch are cap-
tured in H, while changes in the timbre appear in E. The space of
the spectral envelope is simpler and can be accurately represented
via Gaussian modeling.

The proposed method is particularly well suited for score-
informed SCSS, since the pitch of each source is (approximately)
known beforehand, having a very good guess of the shape of H in
(1). Given H, finding E can be cast as an inverse problem. This
formulation is inspired in part by the excellent results reported by
[8] for a number of inverse problems in image processing.

Following [8], the Gaussian parameters and the signal represen-
tation are simultaneously estimated via an efficient MAP-EM (max-
imum a posteriori expectation-maximization) algorithm. Once the
decomposition is obtained, we can construct a time-frequency mask
source, recovering each source from the mixture by Wiener filtering.

In [3] the authors proposed a method based on NMF that also
uses parametric templates to represent the harmonic structure of
notes. Timbre is represented by the estimation of the amplitude of
partials. The main difference with the proposed approach is that,
for each instrument, all the notes are assumed to share the same
fixed relative harmonics amplitudes. The Gaussian modeling allows
a more flexible representation capturing the frequency-dependent
resonance of the instruments and their variability. 1

1After this paper was submitted we became aware of a related work [7].
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In Section 2 we present the proposed audio (instruments) signal
modeling and describe the algorithm for performing score-informed
SCSS. Section 3 discusses connections with PCA and factorization
methods. In Section 4 we evaluate the method with synthetic and
real data. In Section 5 we conclude the paper.

2. MODELING FRAMEWORK

We propose a model for mixtures of harmonic or quasi-harmonic
instruments. The proposed framework is designed for solving the
score-informed separation, in Section 5 we discuss possible exten-
sions to the fully unsupervised case and speakers separation.

2.1. Single Signal Model

We assume that each source is stationary within a frame. This means
that for the i-th frame, the quasi-harmonic part of the signal can be
considered as harmonic with a fundamental frequency fi. In the
Fourier domain, most of the energy of vi is concentrated in bins
corresponding to frequencies of the form kfi, with k ∈ Z. Rewriting
(1) in a frame basis we obtain

vi = hi • ei +wi, for i = 1, . . . , N,

where hi is the power spectrum of a linear filter that enforces an
harmonic constraint on the representation, ei is the envelope of the
spectral content, and wi is a representation error. We consider hi

to be the spectral response of a comb filter with unit amplitude and
parametrized by its fundamental frequency, hi = h(fi). The point
wise multiplication hi•ei corresponds to the filtering of ei. In every
frame, ei is assumed to be drawn from a Gaussian distribution with
mean μ and covariance Σ, to be learned. The representation error is
assumed to be also Gaussian with zero mean and known or estimated
signal-independent isotropic covariance σ2Id. See Figure 1 for an
illustration of this model.

The available score provides a set of possible values for the fun-
damental frequency, f0 = [f01, . . . , f0N ], which are a very good ap-
proximation of the true values of f = [f1, . . . , fN ]. However, they
cannot be assumed to be identical. A canonical example of such
a situation is the vibrato, where the fundamental frequency slightly
oscillates around a specific note. To deal with this variability we
model the fundamental frequency as a time changing (real valued)
Gaussian distribution centered at the fundamental frequency given
by the score and with variance σ2

0 .2

2.2. Mixed Signal Model

Let’s now assume that the signal is a mixture of c quasi-harmonic
instruments. We want to decompose its power spectrum as

V =

c∑
j=1

Hj •Ej +W. (2)

The pitch and spectral envelope for the j-th instrument are modeled
by the matrices Hj = [hj1, . . . ,hjN ] and Ej = [ej1, . . . , ejN ]
respectively, following the model presented in 2.1. As with NMF,
the model estimation and the signal coding is done simultaneously:

• Estimating the Gaussian parameters G = {(μj ,Σj)}1≤j≤c

for each instrument.

2In all our experiments we considered σ0 to be 1% of f0i. However, σ2
0

might be instrument dependent.

• Estimating the set of envelopes, {Ej}1≤j≤c, and the real

fundamental frequencies, {fj}1≤j≤c, from the spectrum V
given, via the score, the set of corresponding fundamental
frequencies,{f0j}1≤j≤c, and the Gaussian distributions for
each instrument, G.

To solve this non-convex problem we use an adaptation of the effi-
cient MAP-EM algorithm presented for image processing in [8].

We could consider using a GMM to model the spectral content
of the instruments instead of a single Gaussian distribution. This
could help for example when modeling instruments with large tim-
bre variability, i.e., plucked string sounds or singing voice. This is
a natural and relatively simple extension of the framework here pro-
posed and is part of our speaker modeling extension to be reported
elsewhere.

2.3. Computational Algorithm

The MAP-EM algorithm is an iterative procedure that alternates be-
tween two steps. An E-step that estimates the spectral content of the
sources assuming that the Gaussian parameters are known, and an
M-step that reciprocally estimates the Gaussian parameters for each
source while assuming that the spectral envelopes are known. To
simplify the notation and without loss of generality, the Gaussians
are assumed to have zero mean, since they can be centered with re-
spect to the estimated mean. We use the available score to produce a
good initial condition for the algorithm, see Section 2.3.3.

2.3.1. E-Step: Signal Estimation

The E-step can be performed independently for each frame. We ob-
tain the estimates by solving the MAP,

{ẽji, f̃ji}1≤j≤c = argmax
eji,fji

log p(eji, fji|vi, f0ji,G). (3)

Maximizing the cost function in (3) is equivalent to maximizing

log p(vi|eji, fji) + log p(eji|G) + log p(fji|f0ji). (4)

The masking filter h(fji) is a linear operator and can be written
as h(fji) • eji = Ujieji, where Uji = diag(h(fji)). Using this
notation and substituting with the corresponding Gaussian probabil-
ity density functions in (4), we can rewrite the problem as,

{ẽji, f̃ji} = argmin
eji,fji

‖vi −
c∑

r=1

Urieri‖2 +

σ2
c∑

r=1

eT
riΣ

−1
r eri +

σ2

σ2
0

c∑
r=1

|fri − f0ri|2. (5)

For ease of notation, we assume without loss of generality that
the Gaussians have zero mean as the vi’s can be always be centered
in zero. This sub-problem is non-convex when minimizing over both
eji, fji. We solve it by iteratively fixing one and optimizing over the
other.

Fixing fji in (5), the problem is strictly convex and can be solved
efficiently via Wiener filtering and in closed form,

ẽji = UT
jiΣj

(
Idσ

2 +
c∑

r=1

UT
riΣrUri

)−1

vi, (6)

where Id is the identity matrix of the appropriate size. The natural
initial condition is fji = f0ji∀j.

Since we are working with a finite resolution representation of
the spectrogram, the set of distinguishable fundamental frequencies
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Fig. 1. In this figure we show, respectively, an example of a spectrogram V, the corresponding matrices H and E, and a comb filter hi.

is naturally discretized. Thus there is no need to consider the funda-
mental frequency as real valued for obtaining an accurate representa-
tion. Then, solving the problem in (5) with eji fixed, reduces to eval-
uating the cost function in a small number of candidates distributed
around the ones provided by the score, {f0ji}1≤j≤c, choosing the
one for which the minimum is obtained.

In oder to have a physically meaningful decomposition, the ob-
tained {ẽji}1≤j≤c in (6) need to be non-negative. When dealing
with a large number of sources this might not happen in all cases due
to the high degree of under-determination. We then add to (5) a non
negativity constraint, eji ≥ 0 ∀j, i. This constrained optimization
is still convex and can be carried out using projected gradient meth-
ods [9]. In most of our experiments, and in most of the cases, the
solution of the unconstrained problem is already non-negative. This
has also been observed in various image processing inverse prob-
lems [8] (where the pixel intensity is also non-negative). Thus we
use the solution given by (6) as a warm start to the constrained for-
mulation, and in general, only a few (if any) iterations are needed to
reach convergence.

2.3.2. M-Step: Model Estimation

After the estimation of the envelopes and the fundamental frequen-
cies is performed, we recalculate the Gaussian parameters for all the
instruments. This is done via the empirical mean and covariance,

μ̃j =
1

N

N∑
i=1

eji , Σ̃j =
1

N

N∑
i=1

(eji − μ̃j)(eji − μ̃j)
T , 1 ≤ j ≤ c.

Refer to [8] for a discussion on the optimality of this selection (see
Section 5 for comments on how to remove this restriction).

2.3.3. Initialization

The initialization process for the MAP-EM goes as follows. First,
the complete score gets synthesized producing an isolated track for
each source. Then, each of these synthetic tracks is used to learn the
Gaussian parameters for each instrument. In all the cases we assume
that the signals are perfectly aligned to the available scores. The
alignment problem can be done automatically using dynamic time
warping, see [2] and references therein.

3. CONNECTIONS WITH PCA AND NMF

In this section we first present an interpretation of the proposed
method that links it with structured principal component analysis
(PCA). Then we discuss its relations with the NMF.

3.1. Structured Estimation in PCA Bases

Given a set of signals {eji}1≤i≤N , the PCA basis are defined as the
matrix Bj = [bj1, . . . ,bjF ] that diagonalizes the corresponding

covariance matrix, Σj = BT
j SjBj , where Sj = diag(λj

1, . . . , λ
j
F )

is a diagonal matrix, whose diagonal elements are the sorted eigen-
values λj

1 ≥ λj
2 ≥ . . . ≥ λj

F ≥ 0. The columns of Bj are
orthonormal and represent the principal directions of variation of
{eji}1≤i≤N . The magnitude of the eigenvalues measure the energy
of the variation in the corresponding directions.

Working in the PCA basis rather than the canonical one, aji =
BT

j eji, allows to significantly reduce the dimensionality of the data
in a meaningful way. When representing the timbre of the instru-
ments we can verify that they are highly compressible: the first few
eigenvalues of the covariance matrices concentrate most of the total
energy. We can then write our model stated in (2) as

V =
c∑

j=1

Hj •BjAj +W ≈
c∑

j=1

Hj • B̂jAj +W, (7)

where the matrices B̂j = [bj1, . . . ,bjk] conserve only the first k �
F principal directions. The MAP estimate (4) can be equivalently
computed as (see also [8])

{ãji, f̃ji}1≤j≤c = argmin
aji,fji

‖vi −
c∑

r=1

UriB̂jari‖2 +

σ2
c∑

r=1

k∑
p=1

|ari[p]|2
λp
r

+
σ2

σ2
0

c∑
r=1

|fri − f0ri|2.(8)

Inside each PCA basis the atoms are pre-ordered by their corre-
sponding eigenvalues. The weighting term in (8) privileges the coef-
ficients corresponding to the principal directions with larger energy.
This representation stabilizes the decomposition, which is crucial in
these type of source separation ill-posed problems. We used k = 25
in all the experiments.

3.2. Relations with NMF

In standard NMF, the spectrogram of the mixture signal is decom-
pose as the product of two non-negative matrices, V ≈ WH, where
W ∈ R

F×Q, H ∈ R
Q×N , and Q � F,N . The matrix W is

the dictionary and each column represents an atom. The matrix H
codes the activation of each atom in the dictionary throughout the
frames. This representation is a low rank linear approximation of
V. Small variations in the pitch as the ones encountered in a vibrato
for example, significantly increase the rank of V, forcing to increase
the number of atoms, Q. In SCSS this is highly undesirable, the
models need to be as stable as possible in order to make sure that
we can properly identify and reconstruct the multiple sources. Many
solutions have been proposed to address this issue [7, 10].

In contrast to NMF, our proposed model is non-linear. We pro-
pose to use a linear model only to represent the timbre of each instru-
ment, while using the set of parametric filters to model the harmonic
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PLCA PLCA PDA sPCA sPCA Oracle
train M1 train M2 train M1 train M2

SIR 22.8 14.2 20.2 18.1 15.9 20.5
SAR 11.5 6.3 7.7 10.9 9.8 13.6
SDR 11.1 4.8 7.2 10.0 8.7 12.7

Table 1. Results with synthesis method M1 as testing signals.

PLCA PLCA PDA sPCA sPCA Oracle
train M1 train M2 train M1 train M2

SIR 12.4 20.1 12.6 14.9 15.8 19.6
SAR 4.5 10.6 3.3 6.8 7.7 12.3
SDR 3.1 10.1 2.1 5.9 6.8 11.5

Table 2. Results with synthesis method M2 as testing signals.

constraint, as shown in (7). The proposed model is clearly less gen-
eral than NMF since it is restricted to quasi-harmonic signals.

4. NUMERICAL EXPERIMENTS

In this section we evaluate the performance of the proposed method
using real and synthetic data. The performance of the instruments
separation methods is evaluated in terms of the standard measures:
Signal to Interference Ration (SIR), Signal to Artifact Ratio (SAR)
and Signal to Distortion Ration [11].3 All given ratios are av-
eraged over all tested signals. Audio examples are available at
http://www.tc.umn.edu/~sprec009/icassp2012.html

4.1. Synthetic Data

We used the publicly available database described in [3].4 It contains
12 different string quartets (two violins, viola, and cello) by Bach,
Beethoven and Boccherini. These pieces render important charac-
teristics of real musical streams such as the overlap of the sources in
the time-frequency domain. For each piece, the database provides a
MIDI file containing the scores of the first 30 seconds of each piece,
and two synthesized wave files for every individual instrument. The
mixture signals are obtained by summing the individual tracks. The
wave files are synthesized with one of two different method. We will
refer to these methods as M1 and M2 (see [3] for a detailed descrip-
tion). The signals synthesized with the different methods present
distinct characteristics. For instance, they have different vibratos
and decay times. Also, method M2 includes a reverberation effect
present in the sound-font, while M1 does not.

Tables 1 and 2 compare our (sPCA) against the ones produced by
[3] and a method based on PLCA [2] (refered to as PDAand PLCA
respectively).5 We report the results obtained by the proposed algo-
rithm and PLCA using both the testing and training signals to train
the models. The proposed algorithm is less sensitive to the initializa-
tion than the PLCA-based, therefore has better generalization prop-
erties. We also report the results obtained using the true isolated
tracks to generate the Wiener masks (refered as Oracle method).

4.2. Real Data

We used the Development Set for MIREX 2007 MultiF0 Estimation
Tracking Task.6 It contains a 52 second long musical piece played
by different wind instruments. The separated tracks for each instru-
ment are available and the mixture is done by summing them. Table
3 shows the performance ratio obtained for a mixture of 4 instru-
ments (clarinet, flute, horn and oboe) with different training condi-
tions. The obtained results show that each signal is well captured.

3We used the BSS EVAL toolbox [11].
4Available at http://perso.enst.fr/hennequi/database.zip.
5The results for PDAand PLCA were copied from [3].
6http://www.music-ir.org/mirex/wiki/

sPCA sPCA Oracle
train SD train RD

SIR 17.4 17.5 18.2
SAR 11.1 11.2 13.2
SDR 10.1 10.6 11.7

Table 3. Results with MIREX 2007 MultiF0 database. Training using syn-
thetic data (SD), real data from the database (RD), and (Oracle) as in 4.1.

5. CONCLUSIONS

In this paper, we introduced a new framework for representing quasi-
harmonic audio signals that can be used to address audio source sep-
aration problems, and in particular score-informed source separation
of musical mixtures. The method has the ability to model the pitch
and envelope of a sound source independently. This permits the rep-
resentation of signals with combinations of pitches and envelopes
not previously observed. Moreover, it allows to easily incorporate
meta-data such as the musical score indicating the signal to be rep-
resented. In this way, two or more musical instruments with the
same characteristics can be separated. The characterized set of sig-
nals can be extended to incorporate non-harmonic sounds by defin-
ing filters hi with the appropriate masking of spectral components.
The method has been evaluated in the score-informed SCSS prob-
lem with synthetic and real data showing a performance comparable
with those reported in the literature. Preliminary experiments, to be
reported elsewhere, indicate that this basic model, with an GMM and
MRF addition, is very efficient for the separation of speakers as well.
Acknowledgments. Work supported by CSIC, ONR, NGA, ARO,
DARPA, and NSSEFF. We thank Dr. Guoshen Yu for very valuable
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