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ABSTRACT

In this contribution, we present a variational Bayesian framework for
the acoustic echo cancellation problem in the presence of a mem-
oryless loudspeaker nonlinearity. We pursue a cascade modeling
strategy, where first-order Markov models are described over the
acoustic echo path and the nonlinear expansion coefficients. An
iterative algorithm is then derived that learns the posterior on the
echo path and the nonlinear coefficients to fit the evidence distribu-
tion. We show that the formulated variational Bayesian state-space
frequency-domain adaptive filter is efficiently implementable and
performs joint learning of the echo path and the loudspeaker non-
linearity. The algorithm exploits the internal exchange of the reli-
ability information, resulting in effective linear and nonlinear echo
cancellation.

Index Terms— Adaptive filtering, cascade modeling, frequency-
domain, nonlinear echo cancellation, state-space, variational Bayes.

1. INTRODUCTION

Over the years, the problem of nonlinear echo cancellation has been
addressed by means of equivalent multichannel [1, 2] and cascade
structures [3, 4] based upon memoryless Hammerstein modeling.
In this context, multichannel power filters with normalized least-
mean-square (NLMS)-type adaptation have been described that
incorporate a necessary adaptive orthogonalization mechanism [1].
A cascade solution with recursive least-squares (RLS) estimation of
a memoryless polynomial pre-processor has been proposed in [3].
Here, the RLS estimation is carried out in conjunction with the
NLMS-type adaptive learning of the acoustic echo path.

In our work, we resolve the nonlinearity in the Hammerstein
model by a basis-generic expansion [2] that is weighted by corre-
sponding nonlinear expansion coefficients. It is essential to real-
ize that the simultaneous learning of the nonlinear expansion coeffi-
cients and the linear FIR echo path in the Hammerstein model con-
stitutes a joint estimation scenario. In order to derive a robust and re-
cursive algorithm, we adopt a novel approach and model the two un-
known quantities as independent random variables with a first-order
Markov property. This inherently enables the resulting Kalman-type
algorithm to compute the uncertainty measures of the quantities of
interest, and incorporate them in the adaptation process. The Markov
modeling of the two variables of interest followed by the inclusion of
the near-end observation noise into the estimation framework, yields
a composite state-space model for nonlinear echo cancellation.

We revert to a variational Bayesian methodology [5] for in-
ferring the composite state-space model, which we have formu-
lated in the DFT-domain. The ensuing derivation results in our
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variational Bayesian state-space frequency-domain adaptive filter
(VB-SSFDAF) that learns the posterior distributions of the un-
known quantities to fit the evidence distribution. The joint learning
framework facilitates the exchange of reliability measures among
the partial posterior estimators that are derived for the nonlinear
coefficients and the echo path, respectively. We demonstrate the
VB-SSFDAF to be a stable and efficiently implementable recursive
algorithm for nonlinear echo cancellation.

In Sec. 2, we describe the DFT-domain composite state-space
model. The derivation of the variational algorithm, i.e., VB-
SSFDAF, is presented in Sec. 3. In Sec. 4, we support the derived
algorithm with simulation results for single and double-talk cases.
We finally conclude our work in Sec. 5.

2. SYSTEMMODEL

In Fig. 1, which depicts a nonlinear echo cancellation scenario, the
input signal xt from the far-end undergoes a nonlinear transforma-
tion due to a loudspeaker nonlinearity f(·) to give the nonlinearly
mapped input signal f(xt). Here, t denotes the sample-time index.
The nonlinearly mapped input signal f(xt) then gets linearly con-
volved with the echo path w′

t to generate the echo signal dt. The
echo signal dt is superimposed with the near-end speech and noise
st resulting in the microphone signal yt. The aim then of the adap-
tive algorithm is to come up with estimates of the echo path bw′

t and
the nonlinear mapping bf(·) such that the inferred echo signal bdt ad-
equately cancels the actual echo signal dt.
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Fig. 1. Acoustic echo cancellation in the presence of a loudspeaker
nonlinearity f(·).
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2.1. DFT-Domain Observation Model

We initiate our derivation by resolving the nonlinearly mapped input
signal f(xt) in terms of a basis-generic expansion

f(xt) =

pX
i=1

a′

t,iφi(xt) , (1)

where φi(·) is the ith basis function and p is the considered expan-
sion order. As we aim to derive an adaptive filtering algorithm in the
DFT-domain, it is necessary to describe the frame-based definition
of the input signal,

xτ = [ xτR−M+1 xτR−M+2 . . . xτR ]T , (2)

where R and M are the frame-shift and the frame-size, respectively.
The symbol T denotes transposition. Using (1) and (2), we express
the frame-based nonlinearly mapped input signal fτ as

fτ = [ f(xτR−M+1) f(xτR−M+2) . . . f(xτR) ]T , (3)

and substitute (1) into (3) to get

fτ =

"
pX

i=1

aτ,iφi(xτR−M+1) . . .

pX
i=1

aτ,iφi(xτR)

#T

=

pX
i=1

aτ,ixτ,i , (4)

where xτ,i = [φi(xτR−M+1) φi(xτR−M+2) . . . φi(xτR)]T. The
frame-time index is denoted by τ , and aτ,i = a′

t=τR,i is the frame-
based version of the nonlinear coefficients a′

t,i. The term fτ in (4) is
converted into the M × M DFT-domain matrix eXτ by applying an
M × M DFT-matrix FM followed by diagonalization

eXτ = diag {FM fτ} =

pX
i=1

aτ,iXτ,i . (5)

Here, Xτ,i = diag {FMxτ,i} is the ith component of the nonlinearly
mapped input signal in the DFT-domain.

We then consider L = M − R non-zero coefficients of the
frame-based echo path wτ = w′

t=τR and apply the DFT, i.e.,

Wτ = FM

h
wT

τ 0TR×1

iT

, (6)

to obtain the M × 1 frequency-domain vectorWτ , where 0R×1 de-
notes a zero-padding operation. Using (5) and (6), the frame-based
microphone signal yτ = [yτR−R+1 yτR−R+2 . . . yτR]T can be ex-
pressed via the overlap-save convolution,

yτ = Υ
TF−1

M
eXτWτ + sτ . (7)

The matrix Υ
T = [0R×L IR] is an R × M projection matrix and

the near-end disturbance vector sτ is defined analogous to yτ . We
zero-padd yτ using Υ and apply the Fourier matrix FM , i.e., Yτ =
FMΥyτ , to get the DFT-domain observation model,

Yτ = FMΥΥ
TF−1

M
eXτWτ + FMΥsτ (8)

= GeXτWτ + Sτ (9)

= eCτWτ + Sτ , (10)

where eCτ = GeXτ andG = FMΥΥ
TF−1

M . The term Sτ = FMΥsτ
is modeled as zero-mean and bin-wise uncorrelated Gaussian noise
with an M × M diagonal covariance matrix Ψ

S
τ =

˙
SτSHτ

¸
. The

symbol H denotes Hermitian transposition and 〈·〉 is the expectation
operator.

2.2. Composite State-Space Model

It can be deduced from (5) and (10) that eCτ =
Pp

i=1 aτ,iCτ,i, where
Cτ,i = GXτ,i is the overlap-save contrained version of the ith com-
ponent Xτ,i of the nonlinearly mapped input signal eXτ in the DFT-
domain. We substitute eCτ =

Pp

i=1 aτ,iCτ,i into (10) to get

Yτ =

pX
i=1

aτ,iCτ,iWτ + Sτ

= [ Cτ,1 . . . Cτ,p ] [ aτ,1IM . . . aτ,pIM ]TWτ + Sτ

= Cτ [ aτ ⊗ IM ]Wτ + Sτ , (11)

where ⊗ denotes the Kronecker product and aτ = [aτ,1 . . . aτ,p]T.
In (11), Cτ = [Cτ,1 . . .Cτ,p]. The terms Wτ and aτ represent the
unknown echo path and the nonlinear expansion coefficients, respec-
tively. Here, we introduce another useful form of the DFT-domain
observation that is fully equivalent to (10) and (11)

Yτ = Cτ [ aτ ⊗ IM ]Wτ + Sτ = CWτaτ + Sτ , (12)

where CWτ = [Cτ,1Wτ . . .Cτ,pWτ ]. We augment the observation
model in (12) with the first-order Markov models ofWτ [6] and aτ ,

Wτ = A ·Wτ−1 + ΔWτ ,

aτ = B · aτ−1 + Δaτ , (13)

with 0 < {A, B} < 1 as the respective transition coefficients.
Our Markov modeling of the nonlinear expansion coefficients aτ
shall facilitate the resulting algorithm to endure a time-varying non-
linearity due to temperature drifts, and to adapt to component tol-
erances [3]. For derivational ease, the process noise terms, i.e.,
ΔWτ and Δaτ , are modeled as zero-mean and bin-wise uncorre-
lated Gaussian random vectors with diagonal covariance matrices
Ψ

Δw
τ =

˙
ΔWτΔWH

τ

¸
and Ψ

Δa
τ =

˙
ΔaτΔaHτ

¸
. The composite

state-space model described by (12) and (13) is depicted in Fig. 2.

3. THE VARIATIONAL ALGORITHM: VB-SSFDAF

For joint learning of the composite state-space model, we seek to
derive posterior estimators for the acoustic echo path and the non-

aτ

B z−1

Δaτ

Wτ

A

z−1 ×ΔWτ Cτ

Sτ

Yτ

Fig. 2. Conceptual depiction of the dynamical modeling for the
acoustic echo path and nonlinear expansion coefficients.

38



linear expansion coefficients. Since the true posterior p(Wτ , aτ |Yτ )
is generally intractable [5], we aim to estimate an arbitrary poste-
rior distribution q(Wτ , aτ ) on the echo path and nonlinear expan-
sion coefficients that maximizes the variational lower bound for the
log-evidence distribution ln p(Yτ ). For derivational simplicity we
utilize the mean field approximation [5] to factorize the arbitrary
posterior, i.e., q(Wτ , aτ ) = qw(Wτ )qa(aτ ), and formulate the vari-
ational lower bound F(qw(Wτ ), qa(aτ )) as [5]

ln p(Yτ ) ≥

Z Z
qw(Wτ )qa(aτ )ln

„
p(Wτ , aτ ,Yτ )

qw(Wτ )qa(aτ )

«
dWτdaτ

= F(qw(Wτ ), qa(aτ )) . (14)

Optimal log distributions, i.e., ln qw(Wτ ) and ln qa(aτ ), that max-
imize F(qw(Wτ ), qa(aτ )) to fit ln p(Yτ ) are then determined via
the calculus of variations to be [5]

ln qw(Wτ ) = 〈ln p(Wτ ,Yτ |aτ )〉
qa(aτ ) + ln Zw , (15)

ln qa(aτ ) = 〈ln p(aτ ,Yτ |Wτ )〉
qw(Wτ ) + ln Za . (16)

The operators 〈·〉
qa(aτ ) and 〈·〉

qw(Wτ ) denote expectations with re-
spect to qa(aτ ) and qw(Wτ ), with Za and Zw as the corresponding
normalizations. The expressions in (15) and (16) signify the learn-
ing of one quantity of interest subject to the expectation over the
other one. Due to Markov modeling, all distributions are implicitly

conditioned on the predicted mean of the echo path bW+

τ−1 and the
nonlinear coefficients ba+τ−1 inferred at frame-time τ .

3.1. Echo-Path State Estimator

The joint distribution p(Wτ ,Yτ |aτ ) = p(Yτ |Wτ , aτ )p(Wτ | bW+

τ−1)
in (15) is factorized in terms of complex multivariate Gaussian trans-
mission [7] p(Yτ |Wτ , aτ ) = Nc(GeXτWτ ,ΨS

τ ), i.e., according to

(9), and transition p(Wτ | bW+

τ−1) = Nc( bW+

τ−1,P
+
τ−1) distributions.

The terms bW+

τ−1 = A · bWτ−1 and P+
τ−1 = A2 · Pτ−1 + Ψ

Δw
τ [8]

are the predicted echo path mean and the predicted error covariance
at frame-time τ , respectively. Here, we highlight that bWτ−1 is the
estimated DFT-domain echo path vector at frame-time τ − 1 and

Pτ−1 =
D
(Wτ−1 − bWτ−1)(Wτ−1 − bWτ−1)

H
E

is the correspond-

ing echo-path state-error covariance. Considering this factorization,
we meticulously resolve the expectation [7] 〈·〉

qa(aτ ) in (15). The
subsequent completion of squares results in Kalman-like update
rules for the acoustic echo path estimation, i.e., estimation of the
mean and the covariance of qw(Wτ ). We thus present the echo path
learning rules in the diagonalized [6] [7] form

bW+

τ−1 = A · bWτ−1 (17)

P+
τ−1 = A2 · Pτ−1 + Ψ

Δw
τ (18)

Ωτ =
R

M

pX
i=1

Qτ−1,iiX
H
τ,iΨ

S −1

τ Xτ,i (19)

eP+

τ−1 =
“
Ωτ + P+ −1

τ−1

”
−1

; Vτ = eP+

τ−1P
+ −1

τ−1 (20)

Kw,τ = eP+

τ−1
beXH

τ

„beXτ
eP+

τ−1
beXH

τ +
M

R
Ψ

S
τ

«
−1

(21)

bWτ = Vτ
bW+

τ−1 +Kw,τ

„
Yτ −GbeXτVτ

bW+

τ−1

«
(22)

Pτ =

„
IM −

R

M
Kw,τ

beXτ

« eP+

τ−1 , (23)

where beXτ =
Pp

i=1 baτ−1,iXτ,i. The computation of beXτ and the
expression in (19) manifest the injection and utilization of the esti-
mated nonlinear coefficients baτ−1,i and the p×p coefficient error co-
varianceQτ−1 =

˙
(aτ−1 − baτ−1)(aτ−1 − baτ−1)

H
¸

from the itera-
tion at τ −1. Owing to the modeled diagonal attributes ofQτ−1, we
have only considered the corresponding diagonal elements Qτ−1,ii.
We have initialized the echo-path state estimator with baτ−1,i and
Qτ−1,ii, which were estimated at frame-time τ − 1, to eventually
execute our variational algorithm in a purely sequential way.

If we set the coefficient error covariance toQτ−1 → 0, it causes
the echo-path absorption term in (19) to Ωτ → 0. Consequently,

the modified predicted state-error covariance eP+

τ−1 in (20) and the
modified Kalman gainKw,τ in (21) acquire their conventional forms
according to [7], and the echo-path assimilation term Vτ equates to
the identity matrix IM . Hence, for Qτ−1 → 0 the recursion in (17)
to (23) reduces to the SSFDAF [7] for a linear dynamical model.

3.2. Nonlinear Expansion Coefficient Estimator

We follow an approach similar to the derivation of the echo-path
state estimator in Sec. 3.1 and factorize the joint distribution in (16).
The distribution p(aτ ,Yτ |Wτ ) = p(Yτ |Wτ , aτ )p(aτ |ba+τ−1) can be
expressed in terms of complex multivariate Gaussian transmission
p(Yτ |Wτ , aτ ) = Nc(CWτaτ ,ΨS

τ ), i.e., according to (12), and
transition p(aτ |ba+τ−1) = Nc(ba+τ−1,Q

+
τ−1) distributions. The termsba+τ−1 = B · baτ−1 and Q+

τ−1 = B2 · Qτ−1 + Ψ
Δa
τ [8] are the

predicted nonlinear coefficient mean and the predicted coefficient
error covariance at frame-time τ , respectively. Considering these
representations, we resolve the expectation [7] 〈·〉

qw(Wτ ) in (16) and
complete the squares to obtain the Kalman-like learning rules for the
nonlinear expansion coefficient posteriorba+τ−1 = B · baτ−1 (24)

Q+
τ−1 = B2 ·Qτ−1 + Ψ

Δa
τ (25)

Λτ,ii =
R

M
Tr

n
XH

τ,iΨ
S −1

τ Xτ,iPτ

o
(26)

eQ+

τ−1 =
“
Λτ +Q+ −1

τ−1

”
−1

; Uτ = eQ+

τ−1Q
+ −1

τ−1 (27)

Ka,τ = eQ+

τ−1
dCWH

τ

“dCWτ
eQ+

τ−1
dCWH

τ + Ψ
S
τ

”−1

(28)

baτ = Uτba+τ−1 +Ka,τ

“
Yτ − dCWτUτba+τ−1

”
(29)

Qτ =
“
Ip −Ka,τ

dCWτ

” eQ+

τ−1 , (30)

where Tr {·} denotes the trace operation, Ka,τ is the modified
Kalman gain for the nonlinear coefficient estimator, dCWτ =h
Cτ,1

bWτ . . .Cτ,p
bWτ

i
, eQ+

τ−1 is the modified predicted error co-

variance, and Uτ is the nonlinear coefficient assimilation term.
With the exception of (29), we useCτ,i

bWτ = R
M
Xτ,i

bWτ [6] [7]
to achieve an efficient implementation. We consider only the main
diagonals while computing the matrix-inverse in (28), and updat-
ing the terms in (26) and (30) for ensuring numerical stability of
the estimator. It can be noticed in the computation of the nonlinear
coefficient absorption term Λτ,ii in (26) and in the described com-
putation of dCWτ that the echo-path state-error covariance Pτ and
the echo-path state estimate bWτ are being injected into the nonlin-
ear coefficient estimator. Thus, it is evident that both of the partial
posterior estimators are mutually coupled via the corresponding esti-
mated mean and error covariances. We term the recursion in (24) to
(30) together with the rules given in (17) to (23) as the VB-SSFDAF.
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Fig. 3. Performance of the VB-SSFDAF and the linear FDAF at
SNRNL = 5 dB and SNRNL = 15 dB, with ESR = 60 dB.

4. RESULTS

Hard clipping [3] was considered for simulating the nonlinear be-
havior of the loudspeaker. The clipping threshold of the hard clip-
ping function was adjusted to achieve nonlinear signal-to-noise ratio
SNRNL =10 log10(σ

2
xt

/σ2
f(xt)−xt

) of 5 dB and 15 dB, for the con-
sidered Gaussian input xt. We configured R = 64 and M = 256
at the sampling frequency fs = 16 kHz, with A=B=0.9997. The
odd power series, i.e., f(xt) =

Pp

i=1 a′

t,ix
2i−1
t , was used to model

the underlying nonlinearity with the order p = 5. We set Q11,τ = 0
and aτ,1 = 1 so that the VB-SSFDAF may perform at least as good
as a linear algorithm. The linear frequency-domain adaptive filter
(FDAF) [9] was selected as the reference algorithm, while echo re-
turn loss enhancement ERLE = 10 log10(σ

2
dt

/σ2
bdt−dt

) served as
the instrumental measure of performance. The linear FDAF can be
described via the respective error and update equations, i.e.,

Eτ = Yτ − Cτ,1
bWτ−1 (31)bWτ = bWτ−1 + αΨ
X1

−1

τ XH
τ,1Eτ , (32)

where α = 0.1 was the selected adaptation constant. A forgetting
factor γ = 0.9 was used to recursively estimate the diagonalized
DFT-domain input signal covariance matrix Ψ

X1
τ [9]. The covari-

ance parameters, i.e., ΨS
τ , ΨΔw

τ , and Ψ
Δa
τ , were estimated accord-

ing to the expectation-maximization-type approach described in [7].
In Fig. 3, we compare the performance of the VB-SSFDAF with

the linear FDAF. The echo-to-signal ratio ESR = 10 log10(σ
2
dt

/σ2
st

)
was intentionally kept at a favorable ESR = 60 dB to first main-
tain the focus on the effects of nonlinear system modeling. In both
cases of SNRNL studied here, the VB-SSFDAF nearly doubles the
attained ERLE as compared to the linear FDAF. We further investi-
gate the robustness of the derived algorithm in the presence of severe
double-talk at ESR = 0 dB, using the near-end speech signal pre-
sented in Fig. 4. We observe that the VB-SSFDAF, as compared to
the linear FDAF, continues to adapt robustly despite severe double-
talk and considerable system nonlinearity.

5. CONCLUSIONS

We have presented a DFT-domain algorithm for nonlinear acous-
tic echo cancellation that is derived using the variational Bayesian
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Fig. 4. Performance in a double-talk scenario at SNRNL = 5 dB
and SNRNL = 15 dB, with ESR = 0 dB.

methodology. The acoustic echo path and the unknown expansion
coefficients of the memoryless loudspeaker nonlinearity have been
modeled as random variables with first-order Markov property. The
variational Bayesian solution, i.e., VB-SSFDAF, for the formulated
composite state-space model then comprises Kalman-like posterior
estimators for the acoustic echo path and the nonlinear expansion
coefficients. The derived posterior estimators can be implemented
efficiently and perform robust echo cancellation even in the presence
of harsh nonlinearity and continuous double-talk.
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