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ABSTRACT

In acoustic echo cancellation (AEC) applications, oftentimes an
acoustic path from a loudspeaker to a microphone is estimated by
means of a linear adaptive filter. However, loudspeakers introduce
nonlinear distortions which may strongly degrade the adaptive filter
performance, thus nonlinear filters have to be considered. This paper
proposes two adaptive algorithms namely the parallel and cascade
sliding-window kernel based affine projection algorithm (PSW-
KAPA and CSW-KAPA) to solve the problem of nonlinear AEC
(NLAEC) while keeping the computational complexity low. They
are based on a leaky KAPA which employs the theory and algo-
rithms of kernel methods. The basic concept is to perform adaptive
filtering in a linear space that is nonlinearly related to the original
input space. A kernel specifically designed for acoustic applications
is proposed, which consists in a weighted sum of the linear and
the Gaussian kernels. The motivation is basically to separate the
problem into linear and nonlinear subproblems. The weights in the
kernel also impose different forgetting mechanisms in the sliding
window which in turn translates to a more flexible regularization.
Simulation results show that PSW-KAPA and CSW-KAPA consis-
tently outperform the linear NLMS, and generalize well both in high
and low linear to nonlinear ratio (LNLR).

Index Terms— Kernel adaptive filters, Nonlinear Acoustic
Echo Cancellation.

1. INTRODUCTION

Acoustic echo cancellation (AEC) is of great importance in many
practical systems for instance for mobile communications, hands-
free telephony inside a car or in teleconferencing where the existence
of echoes degrades speech intelligibility and listening comfort. Stan-
dard approaches to AEC rely on the assumption that the echo path
to be identified can be modeled by a linear filter. However, loud-
speakers (and also amplifiers, DACs, coders..) introduce nonlinear
distortions and must be considered as nonlinear systems; therefore
nonlinear adaptive filters should be used instead. Several nonlinear
models meant to overcome the limitations of linear filters have been
implemented with more or less success [1][2]. The main problem of
these implementations usually resides in the fact that many more pa-
rameters are needed than in the linear case. Truncated Volterra filters
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are a common solution although only very low nonlinear degrees are
considered due to complexity constraints.

Kernel adaptive algorithms [3][4] and on-line learning algo-
rithms [5] have been subject of great attention due to their good
performance in nonlinear signal processing applications. Kernel
methods are developed based on the theory of reproducing kernel
Hilbert spaces (RKHS) [6] to implement a nonlinear transformation
of the input data into a high-dimensional feature space via a repro-
ducing kernel. If the adaptive filtering operations can be expressed
by inner products of input samples, then it is possible to apply the so
called kernel trick. The power of this idea is that while the solution,
which is a nonlinear function of the input data, is implicitly obtained
in the feature space, it is calculated by applying linear methods on
the transformed data.

Kernel affine projection algorithms (KAPA) [3] has been suc-
cessfully applied to nonlinear equalization, nonlinear system identi-
fication and nonlinear noise cancellation as well as prediction of non-
linear time series. Its application in nonlinear acoustic echo cancel-
lation (NLAEC) is, however, lacking so far. In the former examples
the time span (i.e., input dimension or filter length) is typically very
small, e.g. a few taps. Conversely, in NLAEC applications the input
dimension is very long which makes the direct application of KAPA
impractical. The aim of the paper is therefore two-fold: first to apply
KAPA to the NLAEC problem and second to develop algorithms that
are efficient in NLAEC applications. To this end a leaky KAPA [3],
which is the basis to obtain a sliding-window KAPA (SW-KAPA), is
derived. Moreover, a kernel specifically designed for acoustic appli-
cations is proposed, which consists in a weighted sum of the linear
and the Gaussian kernels. The motivation is basically to separate the
problem into linear and nonlinear subproblems. The weights in the
kernel also impose different forgetting mechanisms in the sliding
window which in turn translates to a more flexible regularization.
Using the proposed kernel, two structures are proposed to reduce
the computational burden of SW-KAPA namely parallel and cascade
SW-KAPA (PSW-KAPA and CSW-KAPA). Simulation results show
that PSW-KAPA and CSW-KAPA consistently outperform the linear
NLMS, and generalize well both in high and low linear to nonlinear
ratio (LNLR).

The paper is organized as follows: in Section 2 the necessary
theory of kernel methods to derive the SW-KAPA algorithms and
the proposed kernel is presented. A detailed description of the pro-
posed algorithms and structures is given in Section 3. In Section 4
these are applied to tackle the NLAEC problem and some results are
presented. Finally, Section 5 summarizes the main conclusions.

2. NONLINEAR ACOUSTIC ECHO CANCELLATION

2.1. Affine Projection Algorithm (APA)

The affine projection algorithm (APA) [7] is a good compromise be-
tween NLMS and RLS. It is adopted in AEC applications due to its
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improved convergence performance and tracking capabilities com-
pared to LMS, while being less complex than RLS. It belongs to
the class of stochastic gradient algorithms which replace the covari-
ance matrix and the cross-covariance vector of the optimal Wiener
solution at each iteration by a local approximation. While the LMS
algorithm simply uses instantaneous values, APA employs better ap-
proximations by using the P most recent inputs and observations.

2.2. Kernel Affine Projection Algorithm (KAPA)

A kernel [6] is a continuous, symmetric, positive-definite function
k : U × U → R. U is the input domain, a compact subset of
R

L. Mercer’s theorem [6] states that any kernel k(u(i),u(j)) can

be expanded as k(u(i),u(j)) =
∞∑

k=1

ζkφk(u(i))φk(u(j)) where

ζk and φk are the eigenvalues and the eigenfunctions, respectively,
where the eigenvalues are nonnegative. Therefore, a mapping f(·)
can be constructed as f(u(i)) = [

√
ζ1φ1(u(i)),

√
ζ2φ2(u(i))...]

such that
k(u(i),u(j)) = f(u(i))T f(u(j)) (1)

The Mercer theorem is employed to transform the input signal vector
u(i) into f(u(i)) in a high-dimensional feature space F. It naturally
allows to formulate the least-squares (LS) cost in the feature space
as,

J(l) = argmin
w

l∑
i=1

∣∣∣d(i)−w
T
f(i)

∣∣∣2 (2)

In the sequel a simplified notation f(i) = f(u(i)) and k(u(i),u(j)) =
k(i, j) is adopted for compactness. The use of a high-dimensional
space provides kernel methods with a very high degree of flexibil-
ity in solving minimization problems [4]. However this appealing
characteristic may cause the solution to perfectly fit any given
input-output data set while it will not generalize well to new in-
coming data. This problem so called overfitting, is specially so if
the Gaussian kernel is used and no precautions are taken. In or-
der to prevent this overfitting, the solution should be regularized,
which is commonly achieved adding a constraint on the L2 norm
of the solution [3],[4],[5]. By introducing the regularization λ, the
complexity of the solution will be limited, and as a result, it will
generalize better to new data points. The regularized LS problem on
the data {d(1), d(2), ...} and {f(1), f(2), ...} can be formulated in
the feature space as

J
′(l) = argmin

w

l∑
i=1

∣∣∣d(i)−w
T
f(i)

∣∣∣2 + λ ‖w‖2 (3)

where λ is the regularization parameter. The APA is then formulated
in the feature space to solve for w thus resulting in the so called
Leaky KAPA [3],

e(i) = d(i)− y(i) = d(i)−Φ(i)Tw(i− 1) (4)

w(i) = (1− λμ)w(i− 1) + μΦ(i)G(i)e(i) (5)

G(i) =
[
Φ(i)TΦ(i) + λI

]−1

(6)

where e(i) = [e(i), e(i−1), . . . , e(i−P +1)], Φ(i) = [f(i), f(i−
1), . . . , f(i− P + 1)] and I is the identity matrix. As discussed be-
fore, wT f(i) is a much more powerful model than the usual hTu(i)
because of the transformation from u(i) to f(i). Finding w through
APA may prove to be an effective way of nonlinear filtering. The
solution w can also be represented in the basis defined by the trans-
formed data vectors f(i) [4] as

w(i− 1) =

i−1∑
j=1

aj(i− 1)f(j), ∀i > 0, (7)

that is, the weight vector at time i − 1 is a linear combination of
all previous transformed input vectors with a vector of expansion
coefficients a defined below. It is here where the ”kernel trick” is
exploited: Given w(i−1) from (7) and the transformed input matrix
Φ(i), the output vector at time i (see 4) is given as

y(i) = Φ(i)Tw(i− 1) = Φ(i)

i−1∑
j=1

aj(i− 1)f(j)

=

i−1∑
j=1

aj(i− 1)
[
Φ(i)T f(j)

]
=

i−1∑
j=1

aj(i− 1)k(i− P + 1 : i, j)

In practice there is no access to the weight vector w since it is in the
(possibly) infinite dimensional feature space F and it would be then
practically impossible to update for w directly [3][5]. Besides, f is
only implicitly known (i.e., it is the kernel’s eigenfunctions), so by
(7) the updating of the weight vector reduces to the updating on the
expansion coefficients ap(i) as

ap(i) =

⎧⎪⎨
⎪⎩

μei+1−p(i)G(i), if p = i

(1− λμ)ap(i− 1) + μei+1−p(i)G(p),
if i− P + 1 ≤ p ≤ i− 1

(1− λμ)ap(i− 1), if 1 ≤ p < i− P + 1.

where ei+1−p(i) =
(
d(p)−∑i−1

j=1
aj(i− 1)k(p, j)

)
is the pre-

diction error normalized by the P × P matrix G(i). Details for the
complete derivation of ap(i) can be found in [3]. So far nothing has
been said about pruning the memory buffers to make the problem
size fixed; actually in (7) the memory buffers grows linearly as new
data arrives up to time i. In the NORMA algorithm [5], which is
equivalent to a kernel version of leaky LMS, this is solved by trun-
cating the kernel expansion coefficients: since at each instant i, the
expansion coefficients are scaled by (1 − λμ), which is less than
1, the oldest terms can be dropped without incurring significant er-
ror. This truncation scheme fundamentally converts NORMA into a
sliding-window kernel LMS (SW-KLMS) algorithm. Following the
spirit of NORMA this paper uses leaky KAPA [3] to obtain a sliding-
window kernel APA (SW-KAPA) to solve the problem of NLAEC.
The implementation of the leaky KAPA here differs from that of [3]
in that in NLAEC applications the error signal is indeed computed
explicitly as this is the signal sent back to the far-end.

2.3. Weighted Sum of Kernels

The choice of the kernel is vital in the development of different al-
gorithms and the rationale behind the choice may be multiple. For
instance, one of the most commonly used kernels is the Gaussian
kernel since its performance is superior than that of other kernels, for
instance, the polynomial kernel. However in [8] polynomial kernels
are the preferred choice since the obtained solutions can be directly
transformed into their corresponding Wiener or Volterra representa-
tion. In NLAEC applications the system impulse response is usually
of very high order, e.g., hundreds of taps in mobile communication
systems and even thousands of taps in room acoustics applications.
The size of these problems makes the direct application of most of
the kernels e.g. Gaussian kernels, impractical for real-time applica-
tions.

In this paper a kernel which consists in a weighted sum of the
linear and the Gaussian kernels is proposed:

kwsk(i, j) = αkL(i, j) + βkG(i, j) (8)

kwsk(i, j) = αu
T (i)u(j) + β exp(−κ ‖u(i)− u(j)‖2) (9)

where α < 1, β = (1 − α) and κ is the Gaussian kernel param-
eter controlling its bandwidth. The proposed kernel, kwsk, can be
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directly applied using the kernel methods theory and algorithms pre-
viously presented. The main benefits of this kernel are: First, the
computational burden can be significantly decreased by choosing a
different input dimension in each kernel. The idea is then to choose
the complete input dimension in the cheap linear kernel (i.e., the
dimension modeling the complete acoustic impulse response) and
a smaller dimension in the Gaussian kernel to model the nonlinear
mapping between the variables. This is possible since the estimation
complexity of the nonlinear mapping is linear in the input dimension
and independent of the degree of the nonlinearity [8] as opposed to,
for instance, truncated Volterra filters [2] [1]. Second, it elegantly
fits into the leaky KAPA since the parameters α and β give yet an-
other degree of flexibility in the regularization of the solution norm.
Taking (3), (7) and (8) the regularization of the solution norm at time
l may be written as

λ ‖w‖2 = λw
T
w = λ

l∑
i=1

l∑
j=1

ajaif
T (i)f(j) (10)

= λ

l∑
i=1

l∑
j=1

ajaikwsk(i, j) (11)

= λ

l∑
i=1

l∑
j=1

ajai (αkL(i, j) + βkG(i, j)) (12)

this shows how the regularization can be favored in one kernel more
than the other by varying the weights.

3. PARALLEL-CASCADE SW-KAPA

This section presents two configurations of the SW-KAPA using the
proposed kernel kwsk for NLAEC namely parallel and cascade SW-
KAPA (PSW-KAPA and CSW-KAPA). These algorithms (see Algo-
rithm 1 for details) share some common steps: the computation of
the kernel and error signals, the expansion coefficients update and
the storage and truncation of the memory buffers (i.e., expansion
coefficients vector and input signal matrix). The parallel configura-
tion is actually the direct application of kwsk into the leaky KAPA
to obtain the PSW-KAPA. The main characteristic of this algorithm
is that the input dimension is different in both kernels. While the
linear kernel assumes sufficient order, the Gaussian kernel may as-
sume a much smaller dimension. The cascade configuration, on the
other hand, consists of two steps: in the first step a standard lin-
ear NLMS is performed independently and the output of the filter
is stored for the second step; in the second step the stored NLMS
output is used as input to the SW-KAPA. The idea behind this con-
figuration is that, as SW-KAPA will work with linearly transformed
input data y(i) = ĥT (i)u(i), the ideas of kernel methods can still
be used here; in fact if sufficient order is used in the NLMS stage,
very little input dimension has to be used in the SW-KAPA stage to
model the nonlinear mapping. The performance of PSW-KAPA and
CSW-KAPA for NLAEC is demonstrated in the next section.

In algorithm 1 the following variables are adopted: P is the
APA projection order, F is the length of the memory buffers,μ is
the step-size, λ is the regularization parameter, u(i) = [u(i), u(i −
1), ..., u(i− L+ 1)] is the input (far-end) signal, d(i) is the desired
(microphone) signal, ĥ is the NLMS weight vector of size (L × 1),
yker(i) = [yker(i−P +1), ..., yker(i)] is a P × 1 output vector, a
is the F × 1 expansion coefficients, x̂(i) = [x(i − P + 1), ...x(i)]
is a P × L input vector, x(i) = [x(i − L + 1), ...x(i)] is a L × 1
input vector, the input memory buffer X is a L× F matrix, d(i) =
[d(i − P + 1), ..., d(i)] is the desired signal vector of size P × 1,
eAEC(i) is the NLAEC error (residual) signal.

Algorithm 1: Sliding-Window Parallel-Cascade Kernel APA

while {u(i), d(i)} available do
if cascade then

perform NLMS and assign the filter output
x(i)← y(i) = ĥT (i)u(i);

else
x(i)← u(i);

end if
eker(i) = d(i)− yker(i) = d(i)− aTkwsk(x̂,X);
eAEC(i) = eker(1);

Ψ =

[
â

0

]
+ μekerG(x̂);

â = Ψ(1 : P − 1);
a = [(1− λμ)a; Ψ(P )] % sliding window;
X = [X x(i)] % input memory buffer;
if length(a) > F then

a(1)← ∅% Delete first element
X(:, 1)← ∅% Delete first vector

end if
end while

4. RESULTS

The performance measure is the Echo Return Loss Enhancement
(ERLE) which is given as,

ERLE(i) = 10 log10

∑q

j=1
d2[(i− 1)q + j]∑q

k=1
e2[(i− 1)q + j]

(13)

which can be seen as the achieved attenuation averaged over time
frames of length q. Simulations were performed using speech sig-
nals (female speech at sampling frequency 8 kHz), i.i.d. background
noise N(i) with SNR 25 dB and the following Hammerstein-like
nonlinearity

yLin(i) = h
T
0 u(i), yNL(i) = h

T
0

(
σNL[u

2(i) + u
3(i) + u

5(i)]
)

d(i) = yLin(i) + yNL(i) +N(i)

where yLin is the linear echo, yNL is the nonlinear echo, h0 is an
80 taps measured acoustic impulse response from a mobile phone,
u(i) is the far-end signal, d(i) is the microphone signal, σNL con-
trols the linear to nonlinear echo ratio (LNLR) ratio. The degree of
the nonlinearity is chosen so high to demonstrate the validity of the
algorithms in modeling high-degree nonlinearities without having to
explicitly know the order, in contrast with Volterra filters where the
order has to be explicitly set in advance. Even if the memory of the
Volterra kernels is chosen small the number of parameters will ex-
plode in a fifth order model. The parameters in every simulations
are: α = 0.85, β = 0.15, μ = 0.5, P = 3, κ = 1, F = 1000,
λ = 0.01, the input dimension of the Gaussian kernel in both the
PSW-KAPA and CSW-KAPA is NG = 5, the NLMS filter lengths
is L = 80, the input dimension of the linear kernel in CSW-KAPA
is NL = 10 whereas in PSW-KAPA NL = 80.

Figure 1 shows the result of PSW-KAPA, CSW-KAPA, NLMS-
only and Gaussian-only-SW-KAPA (GSW-KAPA) with input di-
mension NG = 80. The LNLR is set to 24, 12 and 6 dB in Figures
1(a) to 1(c) respectively. It is clear that GSW-KAPA outperforms the
rest but at the cost of high computational complexity. GSW-KAPA
absolutely outperforms linear NLMS, which performs very poorly,
at low LNLR. In between them, both in terms of complexity and
performance, PSW-KAPA and CSW-KAPA appear as very attrac-
tive alternatives. Their performance is consistently much better than
linear NLMS in the lowest LNLR at the cost of some increase of
computational complexity. Although, CSW-KAPA performs worse
than NLMS in high LNLR, a very interesting (and appealing) char-
acteristic of all the presented SW-KAPA-based algorithms is that
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their performance is almost the same regardless of the LNLR. No-
tice that this characteristic is not usually present in Volterra filters
[1]. This fact also proves the efficiency of the regularization in
keeping the modeling capabilities almost constant. The involved
complexity, in terms of multiplications-additions, only looking at
the kernel evaluations are: the Gaussian Kernel is O([NG × F ]), the
linear kernel is O(NL × F ) and the NLMS is O(L), so this makes
linear NLMS = 80, PSW-KAPA = (80+5)×1000 = 85000, CSW-
KAPA = 80 + (5 + 10) × 1000 = 15080. However computing
the exponential in the Gaussian kernel evaluation is very expensive
if a high input dimension is used. On the other hand, PSW-KAPA
and CSW-KAPA have a reasonable complexity while providing a
significant improvement with respect to the linear NLMS.

5. CONCLUSIONS

This paper proposes two adaptive algorithms namely PSW-KAPA
and CSW-KAPA to solve the problem of NLAEC while keeping the
computational complexity low. They are based on leaky KAPA that
employs the theory and algorithms of kernel methods. By apply-
ing the concept of regularization and deriving a gradient descent
method a leaky KAPA is obtained which is the basis to obtain a
sliding-window KAPA. A kernel specifically designed for acoustic
applications is proposed, which consists in a weighted sum of linear
kernel and Gaussian kernels. The motivation is basically to sepa-
rate the problem in linear and nonlinear subproblems. This strat-
egy reduces the computational complexity as compared with GSW-
KAPA and improves performance as compared with linear NLMS.
The separated weighting in the proposed kernel also imposes dif-
ferent forgetting mechanisms in the sliding-window approach which
in turn translates to a more flexible regularization. Simulation re-
sults showed that GSW-KAPA, PSW-KAPA and CSW-KAPA con-
sistently outperform the linear NLMS, and generalize well both in
high and low NLNR. However the computational complexity of the
GSW-KAPA when using a high input dimension may be prohibitive
compared to the much cheaper PSW-KAPA and CSW-KAPA.

6. REFERENCES

[1] L. A. Azpicueta-Ruiz, M. Zeller, J. Arenas-Garcı́a, and W. Kellermann,
“Novel schemes for nonlinear acoustic echo cancellation based on filter
combinations,” 19–24 April 2009.
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Fig. 1. ERLE at different LNLR comparing the four methods: Gaussian
kernel only (GSW-KAPA), Linear NLMS only, Parallel and Cascade config-
uration using the weighted sum of kernels approach (PSW-KAPA and CSW-
KAPA). The stars are points of GSW-KAPA, squares are points of NLMS,
triangles are points of CSW-KAPA and circles are points of PSW-KAPA.
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