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ABSTRACT

The stereophonic acoustic echo is due to the coupling between two
loudspeakers and two microphones. In the classical approach, this
configuration is modelled by a two-input/two-output system with
real random variables. In this paper, we propose to redesign this
scheme as a single-input/single-output system with complex random
variables. In this framework, we illustrate the behavior of some basic
adaptive algorithms and present a distortion method which is more
suitable for this model.

Index Terms— Stereophonic acoustic echo cancellation (SAEC),
widely linear (WL) model, nonlinear distortion, adaptive filters.

1. INTRODUCTION

In hands-free teleconferencing systems, stereo transmission provides
telepresence thanks to our binaural hearing system. These stereo-
phonic systems give a realistic presence that actual single-channel
systems cannot offer [1], [2]. In this context, stereophonic acoustic
echo cancellation (SAEC) is necessary for full-duplex quality com-
munication. For each microphone in the receiving (i.e., near-end)
location, the SAEC consists of the identification of a two-input un-
known system, consisting of the parallel combination of two acoustic
echo paths (from the two loudspeakers to the microphone). There-
fore, in the usual approach, an SAEC system consists of four adap-
tive filters aiming at identifying four echo paths from two loudspeak-
ers to two microphones.

Despite the inherent similarities, SAEC is fundamentally differ-
ent (and also more difficult) as compared to single-channel acous-
tic echo cancellation. The main challenge of SAEC is that the two
channels may carry linearly related signals, which in turn may make
the normal equation to be solved by the adaptive algorithm singular.
This implies that there is no unique solution to the equation (as in the
single-channel case) but an infinite number of solutions [3]. It was
demonstrated that the only practical solution to the nonuniqueness
problem is to reduce the coherence between the input (loudspeaker)
signals [4]. Consequently, we need to distort these signals but with-
out affecting too much the stereo perception and the sound quality.

In this paper, we propose a different approach for SAEC by re-
casting the classical two-input/two-output scheme with real random
variables as a single-input/single-output system with complex ran-
dom variables. In this framework, we present some basic adaptive
algorithms and also a nonlinear distortion method which could be
more suitable in this context.
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2. A NOVEL MODEL FOR SAEC

The stereophonic acoustic echo is usually modelled by a two-
input/two-output system. In this classical setup, we have two input
or loudspeaker signals denoted by xL(n) and xR(n) (i.e., “left” and
“right”), and two output or microphone signals denoted by dL(n)
and dR(n), where n is the time index. The microphone signals can
be expressed as

dL(n) = yL(n) + vL(n), (1)

dR(n) = yR(n) + vR(n), (2)

where yL(n) and yR(n) are the stereo echo signals, and vL(n) and
vR(n) are the near-end signals. The echo signals can be obtained as
[3], [4]

yL(n) = hT
t,LLxL(n) + hT

t,RLxR(n), (3)

yR(n) = hT
t,LRxL(n) + hT

t,RRxR(n), (4)

where ht,LL,ht,RL,ht,LR,ht,RR are L-dimensional vectors of the
loudspeaker-to-microphone (“true”) acoustic impulse responses, the
superscript T denotes transpose of a vector or a matrix, and the vec-
tors

xL(n) =
[
xL(n) xL(n− 1) · · · xL(n− L+ 1)

]T
xR(n) =

[
xR(n) xR(n− 1) · · · xR(n− L+ 1)

]T
contain the most recent L samples of the loudspeaker signals. Con-
sequently, the main goal of this application is to estimate the four
acoustic impulse responses (i.e., ht,LL,ht,RL,ht,LR,ht,RR) from
the microphone signals in order to cancel the echo due to the cou-
pling between the loudspeakers and the microphones.

In the context of acoustic echo cancellation, the loudspeaker and
microphone signals are all real random variables. In order to intro-
duce the proposed model, let us use the complex notation

d(n) = dL(n) + jdR(n) = y(n) + v(n), (5)

where j =
√−1, y(n) = yL(n) + jyR(n), and v(n) = vL(n) +

jvR(n). Furthermore, let us define the complex random vector

x(n) =
[
x(n) x(n− 1) · · · x(n− L+ 1)

]T
= xL(n) + jxR(n), (6)

where x(n) = xL(n)+jxR(n), so that the complex echo signal can
be expressed as

y(n) = hH
t x(n) + h′H

t x∗(n), (7)
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where the superscripts H and ∗ denote transpose-conjugate and con-
jugate, respectively, and

ht = ht,1 + jht,2, (8)

h′
t = h′

t,1 + jh′
t,2, (9)

with

ht,1 =
ht,LL + ht,RR

2
, ht,2 =

ht,RL − ht,LR

2
,

h′
t,1 =

ht,LL − ht,RR

2
, h′

t,2 = −ht,RL + ht,LR

2
.

Consequently, (7) can be rewritten as

y(n) = h̃H
t x̃(n), (10)

where

h̃t =

[
ht

h′
t

]
, x̃(n) =

[
x(n)
x∗(n)

]
.

Finally, the complex reference signal (7) becomes

d(n) = h̃H
t x̃(n) + v(n). (11)

In this context, our new goal is to estimate the complex acoustic

impulse response h̃t (of length 2L) from the complex microphone
signal, d(n), and the complex loudspeaker signal, x(n). In fact,
the classical two-input/two-output system with real random variables
has been converted to a single-input/single-output system with com-
plex random variables. Looking of (7) or (10), we can recognize the
widely linear (WL) model for complex random variables proposed
in [5]; also, this approach is in consistence with the duality principle
explained in [6].

3. SOME BASIC ADAPTIVE ALGORITHMS

Let h̃(n) =
[

h̃0(n) h̃1(n) · · · h̃2L−1(n)
]T

, be an adap-

tive filter of length 2L, which is an estimate of h̃t, and let

ŷ(n) = h̃H(n− 1)x̃(n) (12)

be the output of the adaptive filter at time n. Thus, the error signal is

e(n) = d(n)− ŷ(n). (13)

Based on (12) and (13), we can write the update of the normalized
least-mean-square (NLMS) algorithm as

h̃(n) = h̃(n− 1) +
αx̃(n)e∗(n)

δ + x̃H(n)x̃(n)
, (14)

where α is the normalized stepsize parameter (0 < α < 2) and
δ ≥ 0 is the regularization constant. The NLMS algorithm could be
useful in practice mainly due to its simplicity. However, it converges
slowly for long length adaptive filters and highly correlated inputs.

In order to improve the convergence rate, we can take advan-
tage of the sparseness character of the echo paths, which inspired the
idea to “proportionate” the algorithm behavior [7]. In other words,
we can update each coefficient of the filter independently of the oth-
ers, by adjusting the adaptation stepsize in proportion to the magni-
tude of the estimated filter coefficient. Hence, the adaptation gain
is “proportionately” redistributed among all the coefficients to em-
phasize the large ones in order to speed up their convergence and,

consequently, to increase the overall convergence rate. Among the
many proportionate-type algorithms developed for echo cancellation
(e.g., see [8] and the references therein), the improved proportionate
NLMS (IPNLMS) algorithm [9] is one of the most attractive choice.
The good features of this algorithm include its simplicity and the
robustness to the sparseness degree of the echo path.

In the context of the proposed model for SAEC, the update of
the IPNLMS algorithm can be expressed as

h̃(n) = h̃(n− 1) +
αG(n− 1)x̃(n)e∗(n)

δ + x̃H(n)G(n− 1)x̃(n)
, (15)

where

G(n− 1) = diag [g0(n− 1), g1(n− 1), . . . , g2L−1(n− 1)] ,
(16)

is a diagonal matrix (of size 2L × 2L) containing the proportionate
(or gain) factors, which are evaluated as

gl(n−1) =
1− κ

4L
+(1+κ)

∣∣∣h̃l(n− 1)
∣∣∣

2
∑2L−1

i=0

∣∣∣h̃i(n− 1)
∣∣∣ , 0 ≤ l ≤ 2L−1,

(17)
where κ (−1 ≤ κ < 1) is a parameter that controls the amount of
proportionality in the IPNLMS algorithm [9].

Another very good candidate for echo cancellation is the affine
projection algorithm (APA) [10], since it converges and tracks faster
than the NLMS algorithm. Besides, it can be efficient from an arith-
metic complexity viewpoint as compared to more complex algo-
rithms from the recursive least-squares (RLS) family. In order to
derive the APA in the context of the proposed model, let us write the
2L× P input matrix

X̃(n) =
[
x̃(n) x̃(n− 1) · · · x̃(n− P + 1)

]
,

where P is the projection order. Also, we can define the P × 1 a
priori error vector as

e(n) = d(n)− X̃T (n)h̃∗(n− 1), (18)

where d(n) =
[
d(n) d(n− 1) · · · d(n− P + 1)

]T
. Us-

ing this notation, the update of the APA is

h̃(n)

= h̃(n− 1) + αX̃(n)
[
δIP + X̃H(n)X̃(n)

]−1

e∗(n),
(19)

where IP is the P × P identity matrix. It can be noticed that, by
taking P = 1, we obtain the update of the NLMS algorithm (14).

The “proportionate” idea can be also extended in the case of
APA, in order to further increase its performance when identifying
sparse impulse responses. For example, using the gain factors of the
IPNLMS algorithm, we can derive the improved proportionate APA
(IPAPA):

h̃(n) = h̃(n− 1) + αG(n− 1)X̃(n)×[
δIP + X̃H(n)G(n− 1)X̃(n)

]−1

e∗(n), (20)

where G(n − 1) is defined in (16) and (17). Clearly, for P = 1 we
find the IPNLMS algorithm [see (15)].

Of course, many other adaptive algorithms can be derived in the
context of the proposed model for SAEC. However, due to the lack
of space, we limit our presentation to these four basic algorithms,
i.e., NLMS, IPNLMS, APA, and IPAPA.
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4. SOLUTIONS TO THE NONUNIQUENESS PROBLEM

It is well known that in the SAEC problem, most of the time, the
two input signals [i.e., xL(n) and xR(n)] are obtained by filtering a
common source, so that a problem of nonuniqueness is expected [3].
Also, it was found that preprocessing of these far-end loudspeaker
signals that actually are transmitted to the near-end room is the only
way to achieve a unique solution [4]. In other words, it may be
required to distort the input signals xL(n) and xR(n), in order to
reduce the coherence between these two signals, which can lead to
the estimation of the true acoustic impulse responses. However, this
distortion must be performed in such a way that the quality of the
signals and the stereo effect are not degraded.

A simple but efficient method uses positive and negative half-
wave rectifiers on each channel respectively [4], i.e.,

x′
L(n) = xL(n) + αr

xL(n) + |xL(n)|
2

, (21)

x′
R(n) = xR(n) + αr

xR(n)− |xR(n)|
2

, (22)

where αr is a parameter used to control the amount of nonlinear-
ity. Experiments show that stereo perception is not affected by this
method even with αr as large as 0.5.

In the context of the proposed model, the complex input signal
can be expressed as

x(n) = xL(n) + jxR(n) = ejθr(n) |x(n)| , (23)

where θr(n) [with tan θr(n) = xR(n)/xL(n)] and |x(n)| =√
x2
L(n) + x2

R(n) are the phase and module of x(n), respectively.
In this formulation, we represent the stereo perception with θr(n)
and the quality of the stereo signals with |x(n)|. A modification
of θr(n) only, will mostly affect the stereo effect of x(n); while a
modification of |x(n)| will mostly affect the quality of the stereo
signals.

Similarly, using the complex notation, (21) and (22) can be ex-
pressed as

x′(n) = x′
L(n) + jx′

R(n) = ejθ
′
r(n)

∣∣x′(n)
∣∣ , (24)

where tan θ′r(n) = x′
R(n)/x

′
L(n) and |x′(n)| = √

x′2
L (n) + x′2

R(n).
In order to preserve the quality of the stereo signals, we propose not
to modify the module of the complex input signal x(n), but only
to change its phase. Therefore, we can use the new following
transformations [2]:

x′′
L(n) = cos θ′r(n) |x(n)| , (25)

x′′
R(n) = sin θ′r(n) |x(n)| , (26)

where the phase θ′r(n) is computed from the half-wave rectifiers [see
(24)] while the module corresponds to the module of the original
signals.

5. SIMULATION RESULTS

Simulations are performed in the context of the proposed model
for SAEC. The acoustic impulse responses in the far-end location
have 2048 coefficients, while the length of the impulse responses
in the near-end location [i.e., ht,LL(n), ht,RL(n), ht,LR(n), and

ht,RR(n)] is L = 512. The length of the adaptive filter h̃(n) is
2L = 1024 and the sampling rate is 8 kHz.
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Fig. 1. Results of the NLMS algorithm for different types of distor-
tion with αr = 0.3. (a) Misalignment; (b) MSE; (c) MSE detail.

The source signal in the far-end location is a speech sequence.
All simulations are performed in the single-talk scenario, i.e., ab-
sence of a near-end talker. In this case, the near-end signal v(n)
consists only of the background noise. We can define the stereo
echo-to-noise ratio (SENR) [which is equivalent to the signal-to-
noise ratio (SNR)] as SENR = σ2

y/σ
2
v , where σ2

y = E
[|y(n)|2]

and σ2
v = E

[|v(n)|2] are the variances of y(n) and v(n), respec-
tively. In our simulations, the background noise in the near-end is
an independent white Gaussian signal and its level is set such that
SENR = 30 dB.

We choose for comparisons the four algorithms presented in
Section 3, i.e., NLMS, IPNLMS, APA, and IPAPA. The stepsize
for all the algorithms is α = 0.25 and the regularization constants
are δNLMS = δAPA = 20σ2

x and δIPNLMS = δIPAPA = 20σ2
x/(2L)

[11], where σ2
x = E

[|x(n)|2] is the variance of x(n). The
proportionate-type algorithms (i.e., IPNLMS and IPAPA) use κ = 0.
The performance of the algorithms is evaluated in terms of two mea-
sures, i.e., (a) the normalized misalignment (in dB), defined as

20 log10

∥∥∥h̃t − h̃(n)
∥∥∥
2
/
∥∥∥h̃t

∥∥∥
2

(with ‖·‖2 denoting the �2 norm)

and (b) the mean-square error (MSE) averaged over 256 points for
the purpose of smoothing the results.

In all the experiments, we compare the performance of the al-
gorithms using positive and negative half-wave rectifiers [see (21)
and (22)] versus the new proposed distortion [see (25) and (26)];
the distortion parameter is set to αr = 0.3. Also, the case without
distortion is shown as a reference.

Figure 1 presents the performance of the NLMS algorithm. It
can be noticed from Fig. 1(a) that the misalignment is greatly re-
duced by the new distortion. Also, as we can see in Fig. 1(b) and in
the detail presented in Fig. 1(c), the new distortion leads to a better
performance in terms of the MSE as compared to the positive and
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Fig. 2. Results of the APA (using P = 8) for different types of
distortion with αr = 0.3. (a) Misalignment; (b) MSE; (c) MSE
detail.

negative half-wave rectifiers method.

Figure 2 shows the performance of the APA with P = 8; it was
found that this value of the projection order offers a proper compro-
mise between the performance and complexity. It can be noticed
from Fig. 2(a) that the APA converges faster with the new distor-
tion, outperforming by far the NLMS algorithm [see for comparison
Fig. 1(a)]. Also, as we can see in Fig. 2(b) and in the detail presented
in Fig. 2(c), the new distortion leads to a slightly better performance
in terms of the MSE as compared to the positive and negative half-
wave rectifiers.

Since the IPAPA has resulted as a combination between the
IPNLMS algorithm and the APA, it is expected that the IPAPA
should outperform both its predecessors. The last experiment out-
lines this aspect, by comparing these three algorithms in a track-
ing situation (the impulse responses in the near-end location are
shifted to the right by 12 samples). The new distortion is used with
αr = 0.3. The projection order is P = 8 for the APA and IPAPA.
The results are shown in Fig. 3. According to these plots, it is clear
that IPAPA outperforms both the IPNLMS and APA.

6. CONCLUSIONS

In this paper, we proposed to recast the SAEC problem as a single-
input/single-output system with complex random variables. As a
consequence, the four real-valued acoustic impulse responses are
converted to one complex-valued impulse response. The main ad-
vantage of this approach is that instead of handling two (real) output
signals separately, we only handle one (complex) output signal. In
this framework, we have presented some typical adaptive algorithms
and a new distortion method suitable for this model.
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Fig. 3. Results of the IPNLMS, APA, and IPAPA (using P = 8) for
different types of distortion with αr = 0.3. Echo paths changes at
time 30 seconds. (a) Misalignment; (b) MSE; (c) MSE detail.
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